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Why constraints?

Constraints are ubiquitous in AI and OR

Perhaps the two most common formalisms are:

• constraint satisfaction (CSP)

• linear programming (LP)

. . . and all their extensions

Especially common in declarative approaches to problem solving:

define specification of the problem, let solver do the heavy lifting
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Example: Map Coloring

• Vars: WA, NT, Q, NSW, V, SA, T

• Domains: {red, green, blue}
• Constraints: adjacent regions must

have different colors, e.g., WA 6= NT

(Credit: Marriot & Stuckey)
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Example: Map Coloring

A solution is a complete and consistent assignment, e.g., WA =

red, NT = green, Q = red, NSW = green, V = red, SA = blue, T

= green

Notice that it may not be unique! 3



Example: Sudoku

no repeated numbers in any row, column, or 3× 3 square
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Example: Sudoku

array[1..N,1..N] of var PuzzleRange: puzzle;

% All different in rows

constraint forall (i in PuzzleRange) (

alldifferent( [ puzzle[i,j] | j in PuzzleRange ]) );

% All different in columns.

constraint forall (j in PuzzleRange) (

alldifferent( [ puzzle[i,j] | i in PuzzleRange ]) );

% All different in sub-squares:

constraint forall (a, o in SubSquareRange)(

alldifferent( [ puzzle[(a-1) * S + a1, (o-1) * S + o1] |

a1, o1 in SubSquareRange ] ) );

solve satisfy;

Using MiniZinc: https://www.minizinc.org/
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Example: Stigler’s Diet problem

xi = amount of food i in dietci = cost of food i ($5 per burger)

aij = amount of nutrient j in food i (20g protein / burger)

min
x

∑
i∈F

cixi

s.t.
∑
i∈F

aijxi ≥ minnutrj ∀j ∈ N

∑
i∈F

aijxi ≤ maxnutrj ∀j ∈ N

minservei ≤ xi ≤ maxservei ∀i ∈ F

given nutrient information and cost per serving, select the number of servings of each

food so as to (1) minimize the total cost, while (2) meeting nutritional requirements,

i.e. min / max level of nutritional component [Sti45] (actively studied [vD18])

6



Example: Stigler’s Diet problem

x , c ∈ R|F|,b ∈ R|N |,A ∈ R|F|×|N |

min
x

f (x) =
∑
i∈F

cixi

s.t. Ax ≤ b

A linear program in standard form: the constraints Ax ≤ b implicitly define a (possibly

unbounded) feasible polytope, while c defines a linear objective function f over it

The polytope can be viewed as the intersection of |N | hyperplanes

Sol(A, b) = {aj · x ≤ bj : j = 1, . . . , |N |}
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Why constraint learning?

Constraints are ubiquitous in AI and OR: define problem

specification, feed it to a solver

. . . but formalizing the problem is hard!!!

• Most users are not modelling experts

• Often requires interaction between domain and modelling ex-

perts (going back & forth, plenty of debugging)

• Experts do not work for free

This hinders adoption of smart and efficient solution techniques,

makes decision making harder than it needs to be
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Constraint learning

If past working and non-working solutions are available, acquire a

model from them!
array[1..N,1..N] of var PuzzleRange: puzzle;

% All different in rows

constraint forall (i in PuzzleRange) (

alldifferent( [ puzzle[i,j] | j in PuzzleRange ]) );

% All different in columns.

constraint forall (j in PuzzleRange) (

alldifferent( [ puzzle[i,j] | i in PuzzleRange ]) );

% All different in sub-squares:

constraint forall (a, o in SubSquareRange)(

alldifferent( [ puzzle[(a-1) * S + a1, (o-1) * S + o1] |

a1, o1 in SubSquareRange ] ) );

solve satisfy;

Note: CL is an form of machine learning, link discussed later on
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Learning Bundesliga scheduling rules [BS16]

learn a constraint satisfaction model for Bundesliga team

scheduling from the data of a single season

10



Learning spreadsheet formulas with TaCLe [KPGDR17]
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Learning Concrete Mixing from Positive-only data [PK17]
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Learning to Synthesize [DTP18]

A user wishes to buy a custom PC. The PC is assembled from individual

components: CPU, HDD, RAM, etc. Valid PC configurations must satisfy

constraints, e.g. CPUs only work with compatible motherboards [TDP17]

Hard: “Intel CPUs are incompatible with AMD motherboards”

Soft: “The user prefers one CPU over another”
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Learning to Synthesize [DTP18]

Interior design Building design

Urban planning
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Dimensions of Constraint Learning

• Types of constraints:

• hard constraints define the set of valid assignments; used in

SAT, LP, CP, answer set programming, . . .

• soft constraints define preferences among valid assignments;

used in LP, all of operations research

• Learning techniques:

• search-based: smartly enumerate the candidate theories and

pick one that best matches the data

• solver-based: encode the learning problem as a satisfaction or

optimization problem and feed it to a solver

• Are the examples available from the get-go?

• Yes: use passive / offline / batch learning

• No: use interactive learning
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Overview

Gallia est omnis divisa in partes tres:

• Learning hard constraints

• That is, learning the requirements themselves (e.g. the rules

of sudoku or the nutritional requirements of diets)

• Learning soft constraints

• That is, learning preferences among feasible alternatives (e.g.

cheaper diets that satisfy all requirements should be preferred)

• Learning hard & soft constraints interactively

• Useful when examples are not readily available or usage of

supervision is expensive and should be minimized
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Learning Hard Constraints



Overview

• The simplest case: Boolean formulas

• Learning conjunctions (monomials)

• Learning k-CNF

• Search techniques

• General-to-specific, Specific-to-general, Version spaces

• Syntax-guided synthesis

• Applications / implementations
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The simplest case: Boolean formulas

X = {0, 1}n, X = (X1, . . . ,Xn)︸ ︷︷ ︸
variables

, x = (x1, . . . , xn)︸ ︷︷ ︸
assignment

# domain

Y = {0, 1} # labels

H = {candidate formulas φ on X} # hypotheses

Examples:

• conjunctions / disjunctions of up to k literals

H = {Li1 ∨ . . . ∨ Lik : all L’s are literals}

• conjunctive / disjunctive normal form (k-CNF, k-term DNF)

H =

{∧
c

(Li1 ∨ . . . ∨ Lik ) : all L’s are literals

}
for instance (Saturday ∨ Sunday) ∧ Sunny ∧ ¬Bored ∧ ¬Sick 18



The simplest case: Boolean formulas

Let φ∗ ∈ H be a hidden Boolean concept and

D = {(xk , yk)}k=1,...,s ⊆ X × Y # dataset

where yk = 1{x |= φ∗}

`(φ,D) = |{k : 1{xk |= φ} 6= yk}| # 0–1 loss

Learning amounts to finding φ ∈ H with minimal (zero) loss

find φ ∈ H
s.t. `(φ,D) = 0

This is an search problem
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Assumptions

Assumption 1: there is a ground-truth hypothesis φ∗ and it

belongs to H (read: H is “expressive enough”)

Assumption 2: example labels match φ∗, i.e., yk = φ∗(xk) for all

k = 1, . . . , s (read: there is no annotation noise)

This is the realizable setting: a candidate φ with zero loss exists

and can be found by minimizing the loss [Mit81]
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A bit of theory

Learning amounts to finding φ ∈ H with minimal (zero) loss

find φ ∈ H
s.t. `(φ,D) = 0

This also Empirical Risk Minimization (ERM) [Vap13].

This is good!

• If H is “not too expressive” (e.g. finite or bounded VC di-

mension), ERM is PAC learnable

• This means that if enough examples s are given, the hypothe-

sis found by ERM behaves like the true one:

Pr((x |= φ∗)⇔ (x |= φERM)) = 1

• . . . but it doesn’t say anything about φERM = φ∗
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Learning conjunctions (monomials)

Start from φ = x1, then check each literal in turn. Example:

• Current hypothesis

φ = ¬X1 ∧ X2 ∧ ¬X3 ∧ X4 ∧ ¬X5

• Is ¬X1 necessary? Generate

x
′ = {X1,X2,¬X3,X4,¬X5}

If x ′ is an example, check that y = 1:

• if positive, ¬X1 is not necessary, delete it from φ

• if negative, ¬X1 is necessary, keep it

Only n + 1 questions needed to recover φ∗ (Find-S)
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Learning conjunctions (monomials)

Consider a hidden concept φ∗ = X2 ∧ X4

Example X1 X2 X3 X4 X5 y

x1 0 1 1 1 1 1 φ = ¬X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5

x2 1 1 1 1 1 1 φ = X2 ∧ X3 ∧ X4 ∧ X5

x3 0 1 1 0 0 1 φ = X2 ∧ X3 ∧ X4 ∧ X5

x4 1 0 0 1 0 1 φ = X2 ∧ X3 ∧ X4

The “generalization” of all positive examples is:

φ = X2 ∧ X3 ∧ X4

Intuition about PAC: if x ∼ Pr(X ) is “diffuse” enough and if

there is no noise, eventually we will some x ′ = (·, ·, 0, ·, ·) with

y ′ = 1, which allows us to find φ′ = X2 ∧ X4 = φ∗.
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Learning conjunctions (monomials)

Pros:

• Discovers a hypothesis φ ∈ VC (D)

• Only needs positive examples

Cons:

• Discovers a most specific hypothesis only – unclear why we

should focus on that (read: it may be too cautious)
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Learning CSPs

Constraint satisfaction problems (CSPs) are like concepts but:

• Variables can be non-Boolean, usually X ⊆ Zn (although

continuous variables have been considered for LP)

• Constraints can be non-Boolean, e.g.

X1 ≥ X2, X1 6= X2, alldiff({Xi : i ∈ I})

(We used alldiff in sudoku)

Propositionalization can encode any CSP to Bool vars only:

(X1,X2,X3) X1 < X2 X1 > X2 X1 = X2 X1 < X3 . . . y

(1, 2, 3) 1 0 0 1 . . . 1

(2, 3, 1) 1 0 0 0 . . . 0
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Learning CSPs

Constraint satisfaction problems (CSPs) are like concepts but:

• Variables can be non-Boolean, usually X ⊆ Zn (although

continuous variables have been considered for LP)

• Constraints can be non-Boolean, e.g.

X1 ≥ X2, X1 6= X2, alldiff({Xi : i ∈ I})

(We used alldiff in sudoku)

This makes identifiability harder: X1 = X2 and

IOW: syntactically different theories are semantically equivalent
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Learning as search

Learning amounts to finding φ ∈ H with minimal (zero) loss

find φ ∈ H
s.t. `(φ,D) = 0

This is a large, hard problem:

1. large because H is exponential in the number of variables,

2. hard because combinatorial: all variables are discrete
27



Generate-and-test

Generate-and-test is the simplest possible algorithm:

enumerate all φ ∈ H and keep the ones with zero loss

• Obviously correct :-)

• Obviously inefficient :-)

Not viable if H is very large, e.g. n ≥ 20, but one can avoid to

enumerate trivially invalid candidates – used it in practice
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Also make sure not to enumerate twice

• Use lexicographic ordering: impose S � M � C � B

This avoids enumerating the same theory twice

These rules can become pretty tricky: [KTDR19] learns non-linear

mathematical programs from tensor data → plenty of indices →
four-level hierarchical lexicographic ordering! 29



Learning spreadsheet formulas with TaCLe [KPGDR17]

• vector = row or column

• block = type-consistent contin-

guous vectors

• only constraints compatible with

observed blocks are enumerated

– using MiniZinc!
30



ModelSeeker

31



Classical search techniques

• General-to-specific (or top-down): start from most general

hypothesis φ ∈ H, e.g., φ = >, and gradually specialize it to

exclude negative examples

i.e. add constraints as we go

• Specific-to-general (or bottom-up): start from most specific

hypothesis φ and gradually generalize it to cover positive

examples.

i.e. remove constraints as we go

32



Using generalization �g

Lattice of concepts over {S ,M,C ,B} w.r.t. generalization relation

where the generalization relation φ �g φ
′ iff φ covers (labels as

positive) all instances covered by φ′ and possibly some more
33



Using generalization �g

Lattice of concepts over {S ,M,C ,B} w.r.t. generalization relation

The version space is the set of candidates in H consistent with all

examples: VS(D) = {h ∈ H : `(h,D) = 0}
34



Using generalization �g

Lattice of concepts over {S ,M,C ,B} w.r.t. generalization relation

Consider examples:

{1, 1, 0, 0}, negative

{1, 1, 1, 0}, positive

The version space is the set of candidates in H consistent with all

examples: VS(D) = {h ∈ H : `(h,D) = 0}
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Bi-directional search

Lattice of concepts over {S ,M,C ,B} w.r.t. generalization relation

Bi-directional search iteratively shrinks the version space by

observing more and more examples (more later)
36



Syntax-guided Synthesis

Learning amounts to finding φ ∈ H with minimal (zero) loss

find φ ∈ H
s.t. `(φ,D) = 0

Just encode this as propositional satisfiability (SAT)!

• SAT is NP-complete in general,

• but SAT (and related) solvers can be very efficient in practice

• also avoid encoding all examples / constraints from the get

go [KPGDR17]

The advantage is that learning is certifiably exact!
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Learning LPs

Recall linear programs in canonical form:

maxx c · x (1)

s.t. aj · x ≤ bj j = 1, . . . ,m (2)

and learn A and b from positive–negative examples labelled by a

hidden, ground-truth polytope A∗,b∗.
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Notation

Name Constant

i = 1, . . . , n Index over variables

j = 1, . . . ,m Index over constraints

k = 1, . . . , s Index over examples

(xk , yk) The kth example: instance x
k and label yk

amax ∈ R Maximum value for aj,i
bmax ∈ R Maximum value for bj

Decision variable

aj,i ∈ R Learned coefficients

bj ∈ R Learned biases

Auxiliary variable

vk,j ∈ {0, 1} Whether example k violates constraint j

zaj,i ∈ {0, 1} Whether coefficient aj,i is non-zero

zbj ∈ {0, 1} Whether coefficient bj is non-zero
39



Learning LPs with IncaLP

minA,b

∑
i ,j z

a
j ,i +

∑
j z

b
j (3)

s.t. aj · xk ≤ bj ∀j , k : yk = 1 (4)∑
j vk,j ≥ 1 ∀k : yk = 0 (5)

aj · xk ≥ Mvk,j −M + bj + ε ∀j , k : yk = 0 (6)∑
i z

a
j ,i ≥ zbj ∀j (7)

− amaxz
a
j ,i ≤ aj ,i ≤ amaxz

a
j ,i ∀i , j (8)

− bmaxz
b
j ≤ bj ≤ bmaxz

b
j ∀j (9)
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IncaLP

The IncaLP algorithm: m is the number of constraints, D are the

examples, and θ is the decision tree.

1: procedure LearnIncremental(m,D, θ)

2: i ← 1

3: Di ← Choose(D, θ, 20)

4: Vi ← all misclassified examples in D \ Di

5: while Vi is not empty do

6: Ai ,bi ← Solve(Encode(m,Di )) . Eq. 3–9

7: if could not find Ai , bi consistent with Di then

8: return infeasible

9: Vi ← all misclassified examples in D \ Di

10: Di+1 ← Di ∪ Choose(Vi , θ, 1)

11: i ← i + 1

12: return Ai ,bi
41



IncaLP

Choice of which examples to add is driven by a decision tree

heuristic: not strictly necessary, but it does speed things up 42



IncaLP

The non-parametric IncaLP algorithm: D are the examples.

1: procedure LearnNoParams(D)

2: m← 1

3: θ ← LearnDT(D)

4: while true do

5: Ai ,bi ← LearnIncremental(m,D, θ)

6: if could not find Ai , bi then

7: m← m + 1

8: else

9: return Ai ,bi

Guaranteed to terminate in the realizable setting
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Search is search!

Learning amounts to finding φ ∈ H with minimal (zero) loss

find φ ∈ H
s.t. `(φ,D) = 0

In principle, any search algorithm can be used:

• genetic algorithms (see e.g. [PK17]), tabu search, simulated

annealing, ant colony optimization. . .

• any form of stochastic local search suitable for combinato-

rial optimization, and there are plenty [HS04]

Many of these procedures can be tuned for anytime solving – i.e.

if you stop them at any time, they give you some solution

(However, they may never find a perfect solution)
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Links to machine learning

• Constraint learning from positive–negative examples is to

some extent equivalent to binary classification: learn a hy-

pothesis h : X → {0, 1} with low loss

• Indeed, concept learning is classification

• Learning constraints of linear programs is equivalent to learn-

ing a convex polytope [GKKN18]

• This means that in principle standard machine learning tools

can be used here too (yeah, also neural nets)

• However the learned model is not used only for prediction!

e.g. learned CSP can be analyzed, debugged, explained, adapted

by some expert, etc.
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Links to machine learning

• Most theory in machine learning focuses on guaranteeing

generalization, i.e., finding conditions under which the learned

classifier generalizes to instances not in the training set

• In the realizable case, this

• No though is given to identifiability: the learned model must

behave like the gold standard, but it may be different!

(Same issue in Bayesian networks etc.)

The theory says nothing about this.
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Learning Soft Constraints



Why soft constraints?

• Deal with conflicting requirements (e.g. multi-objective opti-

mization)

• Combine knowledge and uncertainty (probabilistic relational

models, fuzzy logic)

• Combine statistical and relational approaches to learning (sta-

tistical relational learning)
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E.g: Markov Logic networks

Definition

• A Markov Logic Network (MLN) L is a set of pairs (Fi ,wi )
where:

• Fi is a formula in first-order logic

• wi is a real number (the weight of the formula)

• Applied to a finite set of constants C = {c1, . . . , c|C |} it de-

fines a Markov network ML,C :

• ML,C has one binary node for each possible grounding of each

atom in L. The value of the node is 1 if the ground atom is

true, 0 otherwise.

• ML,C has one feature for each possible grounding of each for-

mula Fi in L. The value of the feature is 1 if the ground for-

mula is true, 0 otherwise. The weight of the feature is the

weight wi of the corresponding formula
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Markov Logic networks

Intuition

• A MLN is a template for Markov Networks, based on logical

descriptions

• Single atoms in the template will generate nodes in the net-

work

• Formulas in the template will be generate cliques in the net-

work

• There is an edge between two nodes iff the corresponding

ground atoms appear together in at least one grounding of a

formula in L

49



Markov Logic networks: example

Ground network

• A MLN with two (weighted) formulas:

w1 ∀x (Bird(x)⇒ Flies(x))

w2 ∀x , y (Predates(x,y) ∧ Bird(y)⇒ Bird(x))

• applied to a set of two constants {Sparrow, Eagle}
• generates the Markov Network shown in figure 50



Markov Logic networks

Joint probability

• A ground MLN specifies a joint probability distribution over

possible worlds (i.e. truth value assignments to all ground

atoms)

• The probability of a possible world x is:

p(x) =
1

Z
exp

(
F∑
i=1

wini (x)

)
where:

• the sum ranges over formulas in the MLN (i.e. clique tem-

plates in the Markov Network)

• ni (x) is the number of true groundings of formula Fi in x

• The partition function Z sums over all possible worlds (i.e. all

possible combination of truth assignments to ground atoms)
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Markov Logic networks

Inference

• Compute value of x with maximal probability

x∗ = argmax
x

1

Z
exp

(
F∑
i=1

wini (x)

)
= argmax

x

F∑
i=1

wini (x)

⇒ boils down to weighted MAX-SAT.

• Compute value of x with max. probability given evidence e

x∗ = argmaxxp(x |e)

where evidence fixes the value of some of the variables in x
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Markov Logic networks

Learning

• Learn weights of (given) formulas

• parameter learning

• Learn both formulas and weights

• structure learning
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Weighted Constraint Satisfaction Problems (wCSP)

Definition

Given

• A set of pairs {(ci ,wi )}ni=1 where:

• ci is a (soft) constraint

• wi ∈ IR is a weight

• An indicator function 1{x |= c} evaluating to one if c is sat-

isfied by x , and zero otherwise

Find

x∗ = argmax
x∈X

f (x) = argmax
x∈X

n∑
i=1

wi · 1{x |= ci}

Note
Hard constraints can be incorporated in X
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Learning weights for wCSP

Preference learning

Given

• A set of (soft) constraints {(ci )}ni=1

• A set of examples pairs D = {(xj , x ′j )}mj=1 such that for all j it

should hold that

f (xj) > f (x ′j )

• An objective function J(w ,D)

Find

• A set of weights ŵ minimizing the objective:

ŵ = argmin
w

J(w ,D)
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Preference learning for wCSP

E.g. SVM ranking

min
w

||w ||2 + λ
∑m

j=1 ξj

s.t f (xj)− f (x ′j ) ≥ 1− ξj ∀j ∈ [1, n]

where:

• ξj is a penalty for not ranking xj higher than x ′j with a large

enough margin

• ||w ||2 is a regularization term (margin is 2/||w || → large mar-

gin separation)

• λ ∈ R+ is a parameter trading off margin and correct rank-

ings

56



Learning weights for wCSP

Structured-output learning

Given

• A set of (soft) constraints {(ci )}ni=1

• A set of input-output pairs D = {(xj , yj)}mj=1 such that for all

j it should hold that

yj = argmax
y∈Y

f (xj , yj)

• An objective function J(w ,D)

Find

• A set of weights ŵ minimizing the objective:

ŵ = argmin
w

J(w ,D)
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Structured-output learning for wCSP

E.g. Structured-output SVM

min
w

||w ||2 + λ
∑m

j=1 ξj

s.t f (xj , yj)− f (xj , y
′
j ) ≥ 1− ξj ∀j ∈ [1, n] ∀y ′j 6= yj

where:

• ξj is a penalty for not ranking yj higher than any alternative

output y ′j with a large enough margin

Problem
The number of constraints is equal to m × (|Y| − 1) and is

typically exponential in the number of output variables
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Structured-output SVM for wCSP

Cutting plane algorithm

1. Initialize weights w = 0 and set of constraints Sj = ∅ for

each example j

2. While constraint added, for each example (xj , yj)

2.1 Check penalty using current Sj

ξj = max
y ′
j ∈Sj

1 + f (xj , y
′
j )− f (xj , yj) [weighted CSP problem!!]

2.2 Check penalty in full space Y

ξnewj = max
y ′
j 6=yj

1+f (xj , y
′
j )−f (xj , yj) [weighted CSP problem!!]

2.3 If ξnewj − ξj > ε

2.3.1 Add constraint and update Sj

2.3.2 Retrain
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Weighted Constraint Optimization Problems (wCOP)

(possible) Definition

Given

• A set of triplets {(ci ,wi , φi )}ni=1 where:

• ci is a (soft) constraint

• wi ∈ IR is a weight

• φi is a cost function mapping ci and x to a real value (e.g. a

measure of how far x is from satisfying ci )

Find

x∗ = argmin
x∈X

f (x) = argmin
x∈X

n∑
i=1

wi · φ(x , ci )

Note
It is more natural to model the problem as cost minimization
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Learning weights for wCOP

Preference learning

Given

• A set of (soft) constraints and cost functions {(ci , φi )}ni=1

• A set of examples pairs D = {(xj , x ′j )}mj=1 such that for all j it

should hold that

f (xj) > f (x ′j )

• An objective function J(w ,D)

Find

• A set of weights ŵ minimizing the objective:

ŵ = argmin
w

J(w ,D)
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Preference learning for wCOP

E.g. SVM ranking

min
w

||w ||2 + λ
∑m

j=1 ξj

s.t f (xj)− f (x ′j ) ≥ 1− ξj ∀j ∈ [1, n]

where:

• ξj is a penalty for not ranking xj higher than x ′j with a large

enough margin

• ||w ||2 is a regularization term (margin is 2/||w || → large mar-

gin separation)

• λ ∈ R+ is a parameter trading off margin and correct rank-

ings
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Learning weights for wCOP

Structured-output learning

Given

• A set of (soft) constraints and cost functions {(ci , φi )}ni=1

• A set of input-output pairs D = {(xj , yj)}mj=1 such that for all

j it should hold that

yj = argmin
y∈Y

f (xj , yj)

• An objective function J(w ,D)

Find

• A set of weights ŵ minimizing the objective:

ŵ = argmin
w

J(w ,D)
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Structured-output learning for wCOP

E.g. Structured-output SVM

min
w

||w ||2 + λ
∑m

j=1 ξj

s.t f (xj , y
′
j )− f (xj , yj) ≥ 1− ξj ∀j ∈ [1, n] ∀y ′j 6= yj

where:

• ξj is a penalty for not giving yj a lower cost than to any alter-

native output y ′j with a large enough margin

Problem
The number of constraints is equal to m × (|Y| − 1) and is

typically exponential in the number of output variables
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Structured-output SVM for wCOP

Cutting plane algorithm

1. Initialize weights w = 0 and set of constraints Sj = ∅ for

each example j

2. While constraint added, for each example (xj , yj)

2.1 Check penalty using current Sj

ξj = max
y ′
j ∈Sj

1 + f (xj , yj)− f (xj , y
′
j ) [weighted COP problem!!]

2.2 Check penalty in full space Y

ξnewj = max
y ′
j 6=yj

1+f (xj , yj)−f (xj , y
′
j ) [weighted COP problem!!]

2.3 If ξnewj − ξj > ε

2.3.1 Add constraint and update Sj

2.3.2 Retrain
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Selecting constraints and learning weights for wCOP

Constraint Selection and Preference learning

Given

• A set of candidate (soft) constraints and cost functions C =

{(ci , φi )}ni=1

• A set of examples pairs D = {(xj , x ′j )}mj=1 such that for all j it

should hold that

f (xj) > f (x ′j )

• An objective function J(w ,D)

Find

• A subset of the constraints Ĉ ⊆ C and a set of weights ŵ s.t.:

(Ĉ, ŵ) = argmin
C′⊆C

argmin
w∈IR|C′|

J(w ,D)
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Regularization for Constraint Selection

2-norm regularization

J(w) = ||w ||2 + λE (w)

• Penalizes weights by (squared) Euclidean norm

• Weights with less influence on error get smaller values

• No explicit bias towards exactly zero weights
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Regularization for Constraint Selection

1-norm regularization

J(w) = |w |+ λE (w)

• Penalizes weights by sum of absolute values

• Encourages less relevant weights to be exactly zero (sparsity

inducing norm)
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Constraint Selection and Preference learning for wCOP

E.g. SVM ranking with 1-norm regularization

min
w

|w |+ λ
∑m

j=1 ξj

s.t f (xj)− f (x ′j ) ≥ 1− ξj ∀j ∈ [1, n]

where:

• ξj is a penalty for not ranking xj higher than x ′j

• |w | is a sparsity inducing regularization term

• λ ∈ R+ trades off sparsity and correct rankings

Note
Structured-output learning can also be adapted by replacing

two-norm with one-norm
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Learning constraints and weights for wCSP

Constraint Learning and Preference learning

Given

• A language L defining valid constraints

• A set of examples pairs D = {(xj , x ′j )}mj=1 such that for all j it

should hold that

f (xj) > f (x ′j )

• An objective function J(w ,D)

Find

• A set of constraints valid according to the language L and a

set of weights ŵ s.t.:

(Ĉ, ŵ) = argmin
C′∈L

argmin
w∈IR|C′|

J(w ,D)
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Pyconstruct

Pyconstruct is a Python library for soft constraint learning (both wCSPs

and wCOPs) using structured-output prediction. The wCOP is encoded

in MiniZinc.

URL: github.com/unitn-sml/pyconstruct
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Constraint Learning and Preference learning for wCSP (hints)

Two step approach

1. Run hard constraint learning algorithm to get set of candidate

constraints C
2. Run constraint selection and preference learning on C

Combined approach

1. Start with empty set of constraints C = ∅

2. While no improvement

2.1 Use language bias from hard constraint learning to generate

candidate extensions C′ of constraints in C
2.2 Replace C with C′

2.3 Run constraint selection and preference learning on C
2.4 Discard zero weight constraints from C
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Interactive Learning



What is interactive learning good for?

1. To extract knowledge from an expert

2. To elicit the preferences of a customer by asking simple ques-

tions about alternative products

3. To ask the labels of the most informative instances only, esp.

if supervision is expensive

4. To speed learning up by asking smart queries

Note: related to active learning and preference elicitation, but not

quite the same
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From offline to interactive

There is a hidden, target theory C ∗ over domain X .

Offline:

• Given instances xi labelled by yi = 1{xi |= C ∗}
• Find a theory C s.t. yi = 1⇔ (xi |= C ) for i = 1, . . . , n

⇓
Interactive:

• Given an oracle that answers queries by consulting C ∗

• Find a theory C consistent with all answers

(The soft constraints case changes analogously.)
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From offline to interactive

There is a hidden, target theory C ∗ over domain X .

Offline:

• Given instances xi labelled by yi = 1{xi |= C ∗}
• Find a theory C s.t. yi = 1⇔ (xi |= C ) for i = 1, . . . , n

⇓
Interactive:

• Given an oracle that answers queries by consulting C ∗

• Find a theory C consistent with all answers

(The soft constraints case changes analogously.)
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Assumption 1: there is a ground-truth hypothesis h∗ and it is

contained in H (read: H is “expressive enough”)

Assumption 2: example labels match h∗, i.e., yk = h∗(xk) for all

k = 1, . . . , s (read: there is no annotation noise)

Assumption 3: the oracle is a domain expert

• Does always interpret/understand the queries

• Very dedicated, so always provides correct feedback

(Could also be a robot or a measurement apparatus)

76



An algorithm template

1: procedure learn (max. iterations T )

2: C 1 ← initial theory

3: for t = 1, . . . ,T do

4: Choose a query q (e.g. an instance x ∈ X )

5: Ask q to the oracle

6: Receive feedback (e.g. whether x is a model of C ∗)

7: C t+1 ← update C t according to feedback

8: return CT

Questions:

• what kind of queries should be asked?

• how to pick an informative query?
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What kind of queries?

For hard constraints

• membership: does x satisfy C ∗?

• partial membership: does x [V ] satisfy C ∗?

• equivalence: are C t and C ∗ logically equivalent? If not, pro-

vide a counter-example.

For soft constraints1

• scoring: what is the score f ∗(x) of x?

• ranking: is f ∗(x) ≥ f ∗(x ′)?

• improvement: give me a configuration x ′ s.t. f ∗(x ′) > f ∗(x)

1E.g., for wCSP the real score is f ∗(x) =
∑

i w
∗
i 1{x |= ci}
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Interactive Learning of Hard Con-

straints



Membership Queries: Monomials [BDH+16]

• Current hypothesis (conjunction)

C t = {¬X1,X2,¬X3,X4,¬X5}

• To check whether ¬X1 is really necessary, generate instance

x = {X1,X2,¬X3,X4,¬X5}

• Ask membership query “x |= C ∗?”

• if positive, ¬X1 is not necessary, delete it from C t

• if negative, ¬X1 is necessary, keep it

Only #vars + 1 questions needed to recover C ∗
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Membership Queries: ConAcq [BDH+16]

Bi-directional search

version space identified by

• most general candidate Cg

• most specific candidate Cs

C ∗ always within version space

Idea: pick x ∈ Sol(Cg ) \ Sol(Cs)

• If x is positive, generalize most specific candidate

• If x is negative, specialize most generic candidate

where Sol(C ) = {x : x |= C}
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Version space and Instances

Note: Sol(C ) is inside the circle

81



Query Selection

Select instance x ∈ Sol(Cg ) \ Sol(Cs)
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Positive ⇒ generalize Cs

Generalizing Cs = removing constraints from it
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Negative ⇒ specialize Cg

Specializing Cg = adding constraints to it
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Partial Queries: Quacq [BDH+16]

Consider learning the Eight Queens Problem

Membership: does the board x satisfy

all constraints?

Partial membership: does the partial

board x [V ] violate at least one con-

straint?

Partial membership is more informative: all completions of the

partial configuration are also negative!

(It is also easier to answer from the oracle’s perspective.)
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Example (C. Bessiere)
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Example (C. Bessiere)
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Example (C. Bessiere)
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Example (C. Bessiere)
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Equivalence Queries [Ang88]

Ask whether C t = C ∗. If not, provide a counter-example x s.t.

x |= C ∗ ∧ x 6|= C t

or vice-versa.

More powerful than membership queries2.

But impractical, even domain experts may have trouble answering

them.

2Equivalence queries can be simulated by polynomially many membership

queries [BKLO17].
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Soft Constraints



A user wishes to buy a custom PC. The PC is assembled

from individual components: CPU, HDD, RAM, etc. Valid

PC configurations must satisfy constraints, e.g. CPUs only

work with compatible motherboards [TDP17]

Hard: “Intel CPUs are incompatible with AMD motherboards”

Soft: “The user prefers one CPU over another”
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Weighted Constraint Satisfaction Problems (wCSP)

Definition (same as before!)

Given

• A set of pairs {(ci ,wi )}ni=1 where:

• ci is a (soft) constraint

• wi ∈ R is a weight

• An indicator function 1{x |= c} evaluating to one if c is sat-

isfied by x and to zero otherwise

Find

x∗ = argmax
x∈X

f (x) = argmax
x∈X

n∑
i=1

wi · 1{x |= ci}

Note hard constraints can be incorporated in X
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Interactive learning of soft theories

Assumption: hypothesis space H contains (C ∗,w∗)

• For weight learning, we can reconstruct w∗ perfectly

Depending on application: the oracle is not a domain expert

• May not interpret/understand the queries

• May provide noisy feedback

For instance, a customer on an e-commerce website.

As a consequence, the version space may be empty!
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The generic weight learning loop

1: procedure LearnWeights (C , max iterations T )

2: w1 ← initial weights

3: for t = 1, . . . ,T do

4: Choose a query q (e.g. an instance x)

5: Ask q to the oracle

6: Receive feedback (e.g. the actual score f ∗(x))

7: w t+1 ← update w t according to feedback

8: return wT

Different instantiations for different types of queries / feedback
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Scoring Queries (for a wCSP about cakes!)

A pretty ideal setup—can observe f ∗(x) directly!
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Weight learning of wCSP via regression [RS04]

Same as offline case, except the dataset is built interactively

1: procedure learn (max iterations T , sample set size k)

2: D ← ∅
3: w ← initial weights

4: for t = 1, . . . ,T do

5: Sample x1, . . . , xk ∈ argmaxx∈X f (x ;w)

6: Present {x1, . . . , xk} to the oracle

7: D ← D ∪ {(xj , yj)}kj=1 (yj = f ∗(xj) + noise)

8: w t+1 ← solve regression over D
9: return wT

Regression amounts to solving

w
t+1 ← argmin

w

∑
(x ,y)∈D

(f (x ;w)− y)2
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A scoring oracle may not be available

even experts may not be able to provide absolute scores reliably
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Ranking Queries

relative judgements only — no more pesky absolute scores
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Ranking does not solve everything

What if it is hard to compare alternatives3, e.g. they are too

similar or too diverse? What if there are just too many?

3From https://eagereyes.org/criticism/chernoff-faces
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Preference learning for wCSP via ranking4

Offline case: SVM ranking

min
w

||w ||2 + λ
∑m

j=1 ξj

s.t f (xj)− f (x ′j ) ≥ 1− ξj ∀j ∈ [1, n]

where:

• f (x) =
∑n

i=1 wi · 1{x |= ci}
• ξj is a penalty for not ranking xj higher than x ′j with a large

enough margin

• ||w ||2 is a regularization term (margin is 2/||w || → large

margin separation)

• parameter λ ∈ R+ trades off margin and penalty
4Slide: Andrea Passerini
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Ranking for weight learning of wCSP

Simple extension of offline ranking SVM

1: procedure learn (max iterations T )

2: C 1,w1 ← initial theory, initial weights

3: for t = 1, . . . ,T do

4: Choose x , x ′ to be high scoring and reasonably diverse

5: Present (x , x ′) to the oracle

6: Add oracle ranking x < x ′ to D
7: w t+1 ← learn ranking from D
8: return wT

To get high score / diverse x ’s solve, e.g.

argmax
x ,x ′

f (x ;w) + f (x ′;w) + α · d(x , x ′)

s.t. d(x , x ′) ≤ dmax 101



k-way inference can be slow

What if it is easy to manipulate the configurations?

It’s possible to avoid “k-way inference” by asking the user to

improve the current best configuration
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Improvement Queries

boils down to a pairwise preference f ∗(x̄ t) ≥ f ∗(x t)
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Coactive Learning for weight learning of wCOP [SJ15]

Perceptron-based preference learning from improvement queries

1: procedure learn (max iterations T )

2: C 1,w1 ← initial theory, initial weights

3: for t = 1, . . . ,T do

4: x t ← argmaxx∈X
∑

i wi1i (x)

5: Present x t to the oracle

6: Obtain improved configuration x̄ t

7: w t+1 ← w t + φ(x̄ t)− φ(x t)

8: return CT

Note quality of configurations approaches optimum as O(1/
√
T )

under assumptions on the improvements
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Coactive learning: iteration T
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Coactive learning: iteration T
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Coactive learning: iteration T
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Coactive learning: iteration T + 1

108



Coactive Critiquing [TDP17]

Recall that constraints ≈ features in wCSP

1i (x) = 1{x |= ci} ∀i = 1, . . . , n

What if we don’t have all of the constraints/features?

Idea

• If oracle improvement can’t be explained by the learner (e.g.

by linear spearability), a constraint is missing

• Ask for the missing constraint, acquire cn+1

Add 1n+1 = 1{x |= cn+1} to the pool of features, proceed as usual

with Coactive Learning
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Critiquing Queries

add the critique to the constraints, update the feature space
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Critiquing Queries

A few remarks

• Can be proven to converge under assumptions, even if most

constraints are acquired on-the-fly

• Not really “learning”

• Critiquing queries provide the missing constraints

Once more: powerful oracles make learning easier
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Still much work to do!

• How to combine learning of hard and soft constraints?

• What are the “best” queries in the soft setting?

• How to properly deal with rationally bounded oracles?

e.g. how to combine technology and human interaction?

• How far can we push and/or guide the oracle?

e.g. how to best exploit and control human abilities?

(and much more)
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Wrapping up



Take-away

• Interaction is fundamental when specifications and prefer-

ences are hard to specify upfront, can cut labeling cost and

speed up learning

• CSPs can be learned via version space approaches (in the

realizable setting)

• wCSP/wCOP weight learning can be cast as

interactive ranking + smart query selection

• Different query types have different:

• ability to learn from human non-experts

• theoretical efficiency [Ang88, BDH+16]
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Thank you!
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Related frameworks

Many topics related to interactive constraint learning

• Pool-based Active Learning

• Preference Elicitation (for interactive recommendation)

• Programming by Feedback [ASSS14]

• Inverse Combinatorial Optimization [Heu04]

• . . .

115



Pool-based Active Learning [Set12, Han14]

Given hidden decision function f ∗ : X → {±1}, instances

x1, . . . , xn ∈ X , and an oracle that labels instances with f ∗

Find a good estimate f of f ∗ with as few queries as possible

Remarks

• Like CP, focuses on quality of learned model loss(f ∗, f )

• . . . but geometrical flavor: SVMs, Gaussian Processes

• Many strategies in common (e.g. version spaces)

Query types: labeling queries (≈ membership), search queries (≈
equivalence), rationales and explanations, . . .

116



Preference Elicitation [Bou02, PTV16]

Given products x1, . . . , xn ∈ X and a user who ranks alternatives

by relative preferrability

Find a good item x ∈ X with the least cognitive effort

If we knew the true user’ scoring function f (x), it would be easy!

But we don’t, so we estimate it iteratively by asking queries

Remarks

• Must model preferences, similar to wCSP/wCOP

• wCSP/wCOP useful for recommending combinatorial items

• Unlike CP, only quality of recommendation x matters

• Learns approximation f of f ∗ only as byproduct

Methods: Bayesian, minimax regret, online learning
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