Constraint Learning

Stefano Teso (with some slides by Luc De Raedt and Andrea Passerini) KU Leuven

@ Reasoning Web Summer School '19, Bolzano

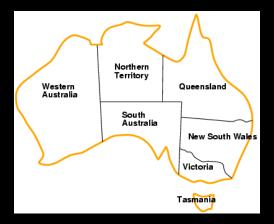
Constraints are ubiquitous in AI and OR

Perhaps the two most common formalisms are:

- constraint satisfaction (CSP)
- linear programming (LP)
- ... and all their extensions

Especially common in declarative approaches to problem solving: *define* **specification** *of the problem, let solver do the heavy lifting*

Example: Map Coloring

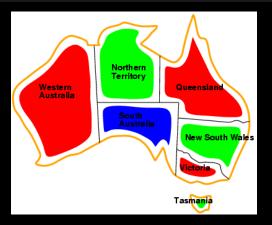


- Vars: WA, NT, Q, NSW, V, SA, T
- Domains: {red, green, blue}

(Credit: Marriot & Stuckey)

 Constraints: adjacent regions must have different colors, e.g., WA ≠ NT

Example: Map Coloring



A solution is a complete and consistent assignment, e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green

Notice that it may not be unique!

Example: Sudoku

			7	4 7	8		6	5
		6				9		З
						8		
	4			8			1	
8	1		2		6		9	7
	9			3			5	
		2						
7		8				6		
9	5		6	1	3			

no repeated numbers in any row, column, or 3×3 square

Example: Sudoku

array[1..N,1..N] of var PuzzleRange: puzzle;

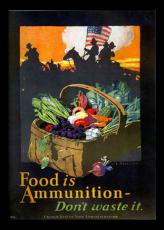
```
% All different in rows
constraint forall (i in PuzzleRange) (
    alldifferent( [ puzzle[i,j] | j in PuzzleRange ]) );
```

```
% All different in columns.
constraint forall (j in PuzzleRange) (
    alldifferent( [ puzzle[i,j] | i in PuzzleRange ]) );
```

```
solve satisfy;
```

Using MiniZinc: https://www.minizinc.org/

Example: Stigler's Diet problem



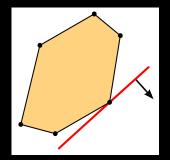
 $x_i =$ amount of food *i* in diet c_i

 $a_{ij} =$ **amount** of nutrient *j* in food *i* (20*g* protein / burger)

$$\begin{split} \min_{\mathbf{x}} & \sum_{i \in \mathcal{F}} c_i \mathbf{x}_i \\ \text{s.t.} & \sum_{i \in \mathcal{F}} a_{ij} \mathbf{x}_i \geq \mathsf{minnutr}_j & \forall j \in \mathcal{N} \\ & \sum_{i \in \mathcal{F}} a_{ij} \mathbf{x}_i \leq \mathsf{maxnutr}_j & \forall j \in \mathcal{N} \\ & \mathsf{minserve}_i \leq \mathbf{x}_i \leq \mathsf{maxserve}_i & \forall i \in \mathcal{F} \end{split}$$

given nutrient information and cost per serving, select the number of servings of each food so as to (1) minimize the total cost, while (2) meeting nutritional requirements, i.e. min / max level of nutritional component [Sti45] (actively studied [vD18])

Example: Stigler's Diet problem



$$m{x}, m{c} \in \mathbb{R}^{|\mathcal{F}|}, m{b} \in \mathbb{R}^{|\mathcal{N}|}, A \in \mathbb{R}^{|\mathcal{F}| imes |\mathcal{N}|}$$
$$\min_{m{x}} f(m{x}) = \sum_{i \in \mathcal{F}} c_i x_i$$
s.t. $Am{x} \leq m{b}$

A linear program in standard form: the constraints $Ax \le b$ implicitly define a (possibly unbounded) feasible polytope, while c defines a linear objective function f over it

The polytope can be viewed as the intersection of $|\mathcal{N}|$ hyperplanes

$$\operatorname{Sol}(A, \boldsymbol{b}) = \{ \boldsymbol{a}_j \cdot \boldsymbol{x} \leq b_j : j = 1, \dots, |\mathcal{N}| \}$$

Constraints are **ubiquitous** in AI and OR: *define problem specification, feed it to a solver*

Constraints are **ubiquitous** in AI and OR: *define problem specification, feed it to a solver*

... but formalizing the problem is hard!!!

- Most users are *not* modelling experts
- Often requires interaction between domain and modelling experts (going back & forth, plenty of debugging)
- Experts do not work for free

This **hinders adoption** of smart and efficient solution techniques, makes decision making **harder than it needs to be**

Constraint learning

If past working and non-working solutions are available, acquire a model from them!

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		З			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

array[1..N,1..N] of var PuzzleRange: puzzle;

% All different in rows constraint forall (i in PuzzleRange) (alldifferent([puzzle[i,j] | j in PuzzleRange]));

```
% All different in columns.
constraint forall (j in PuzzleRange) (
    alldifferent( [ puzzle[i,j] | i in PuzzleRange ]) );
```

```
solve satisfy;
```

Note: CL is an form of machine learning, link discussed later on

Learning Bundesliga scheduling rules [BS16]

2			-3			8	-7	10								18						
-8		-10	7 -		9	-4	1	-6					11			-16]	Scheme	Ret	Trans	Constraint
		14															-11		scheme(612,34,18,1,18)	284	absolute_value	symmetric_alldifferent([118])*34
	11	-8	15 -	16 -	18	-1	3 -	-12	13	-2		-10	17	-4		-14		2	vector(612)	289		global_cardinality([-18., -1-17,0-0,1.,18-17])*1
-3				10							-18		-9	7	-6		12	3	scheme(612,34,18,34,1)	288	id	alldifferent*18
-17		-15		14 -		3			17	-8				-1	18		-16		repart(612,34,18,17,18)	282		alldifferent*306
-17	-5 18			-3 -				-4					-6 16				-2		scheme(612,34,18,2,2)	286		alldifferent*153
-13		-17				11					-0 14		-12				15		scheme(612,34,18,1,18)	284		alldifferent*34
-15		-17			-4				12							-15			repart(612,34,18,34,9)		sign	alldifferent*306
-5		-13 -		1		-6 -							10			-11			scheme(612,34,18,17,1)			alldifferent*36
-0	14			-7		5													scheme(612,34,18,2,1)			alldifferent*306
-18		-12 -					-6			13		-11				-9	1		repart(612,34,18,34,9)	283		sum_ctr(0)*306
12	-7	18							-4	9	-1	16	-8	6	-13	5	-3		repart(612,34,18,34,9)	283		sum_cubes_ctr(0)*306
-14	4	-16											1						scheme(612,34,18,1,18)	284		sum_squares_ctr(2109)*34
10	-8	6 -	17	-9	-3	12	2	5	-1	16	-7	18	-15	14	-11	4	-13		repart(612,34,18,34,9)	283		twin*1
-16	3	-2		13			-4 -	-18	15	-6	17	-5	7	-10	1	-12	9		repart(612,34,18,34,9)	283		elements([<i>i</i> ,- <i>i</i>])*1
-2	1	-4	3	-6	5	-8	7 -	-10	9	-12	11	-14	13			-18						
8	-15	10					-1	6	-3	14	-13	12	-11	2	-17	16	-5		modulo(612,4)	281		all_differ_from_at_least_k_pos(152)*1
-4	17	-14		12			15 -			-18					9	-2	11		first(9,[1,3,5,7,9,11,13,15,17			strictly_increasing*1
-7	-11			16					-13		-9		-17		-5				repart(612,34,18,34,9)	283		alldifferent_interval(2)*306
3	13			10 -							18				6		-12		scheme(612,34,18,2,1)	285		alldifferent_interval(2)*306
-15	-9			14					-17		-6		-5		-18				repart(612,34,18,34,9)		sign	sum_ctr(0)*306
17	5			-2 -											-12			20	scheme(612,34,18,1,18)	284	sign	sum_ctr(0)*34
		-5		3									-16				2	21	repart(612,34,18,34,9)	283	sign	twin*1
13		17			-2	11	9	-8	16									22	repart(612,34,18,34,9)	283	absolute_value	twin*1
-9					4 -				-12		10		-18					23	repart(612,34,18,34,9)	283	sign	elements([i,-i])*1
5	12	13		-1					14				-10					24	repart(612,34,18,34,9)	283	absolute_value	elements([i,i])*1
-6						-5 -										-13			first(9,[1,3,5,7,9,11,13,15,17	D 280	absolute value	strictly_increasing*1
18									-2								-1		first(6,[1,4,7,10,13,16])			strictly_increasing*1
-12		-18 -										-16			13		3		repart(612,34,18,34,9)		sign	alldifferent_interval(2)*306
14		16	2 -	11 -	17	18	10	-13	-8						-3				scheme(612,34,18,34,1)		sign	among_seq(3,[-1])*18
-10				9				-5					15				13	20	(012,04,10,04,1)	200		among.acq(s,t i)) to
16	-3	2	-8	13 -	н_	14	4	18	-15	6	-17	5	-7	10	-1	12	-9					

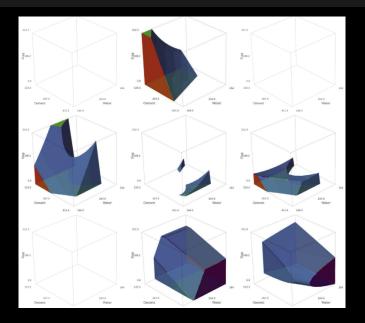
learn a constraint satisfaction model for Bundesliga team scheduling from the data of a single season

Learning spreadsheet formulas with TaCLe [KPGDR17]

ID	Salesperson	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Total	Rank	Label	Items sold total	Max items sold	
	1 Diana Coolen	353	378	396	387	1514	2	Great	34	20	
	2 Marc Desmet	370	408	387	386	1551	1	Great	29	10	
	3 Kris Goossens	175	146	167	203	691	3	Low	19	19	14
	4 Birgit Kenis	93	98	96	105	392	4	Low	17	15	
Block 1	Block 2			Bloc	:k 3			Block 4	Blo	ck 5	
= T1[:, 1]	= T1[:, 2]			= T1[:	, 3:8]			= T1[:, 9]	= T1[:,	10:11]	
				T2					6-1	Items sold	
									Salesperson		
	Total	991	1030	1046	1081	4148			Diana Coolen	5	1
	Average	247.75	257.5	261.5	270.25	1037	Block 6		Marc Desmet	10	1
	Max	370	408	396	387	1551	= T2[1:4, :]		Marc Desmet	8	
	Min	93	98	96	105	392			Diana Coolen	9	
									Birgit Kenis	15	Т3
Quarter	Income	Expenses	Total		Customer	Contact	Contact Name	4	Marc Desmet	8	15
Q1	991	212	779		Frank	1	Diana Coolen		Birgit Kenis	2	
Q2	1030	710	1099	Т4	Sarah	3	Kris Goossens		Diana Coolen	20	
Q3	1046	137	2008	1.4	George	3	Kris Goossens	T5	Marc Desmet	3	1
Q4	1081	240	2849		Mary	2	Diana Coolen		Kris Goossens	19	
Block 10		Block 11			Tim	4	Birgit Kenis		Block 8	Block 9	
= T4[:, 1]		= T4[:, 2:4]			Block 12	Block 13	Block 14		= T3[:, 1]	= T3[:, 2]	
					= T5[:, 1]	= T5[:, 2]	= T5[:, 3]				

 $SERIES(T_1[:, 1])$ $T_2[1,:] = SUM_{col}(T_1[:,3:7])$ $T_1[:,1] = RANK(T_1[:,5])^*$ $T_2[2, :] = AVERAGE_{col}(T_1[:, 3;7])$ $T_1[:,1] = RANK(T_1[:,6])^*$ $T_2[3,:] = MAX_{col}(T_1[:,3:7])$ $T_1[:,1] = RANK(T_1[:,10])^*$ $T_2[4,:] = MIN_{col}(T_1[:,3:7])$ $T_1[:, 8] = RANK(T_1[:, 7])$ $T_4[:, 2] = SUM_{col}(T_1[:, 3:6])$ $T_4[:,4] = PREV(T_4[:,4]) + T_4[:,2] - T_4[:,3]$ $T_1[:, 8] = RANK(T_1[:, 3])^*$ $T_1[:, 8] = RANK(T_1[:, 4])^*$ $T_5[:, 2] = LOOKUP(T_5[:, 3], T_1[:, 2], T_1[:, 1])^*$ $T_1[:,7] = SUM_{row}(T_1[:,3:6])$ $T_5[:,3] = LOOKUP(T_5[:,2],T_1[:,1],T_1[:,2])$ $T_1[:, 11] = MAXIF(T_3[:, 1], T_1[:, 2], T_3[:, 2])$ $T_1[:, 10] = SUMIF(T_3[:, 1], T_1[:, 2], T_3[:, 2])$

Learning Concrete Mixing from Positive-only data [PK17]



Learning to Synthesize [DTP18]

A user wishes to buy a custom PC. The PC is assembled from individual components: CPU, HDD, RAM, etc. Valid PC configurations must satisfy constraints, e.g. CPUs only work with compatible motherboards [TDP17]

Hard: "Intel CPUs are incompatible with AMD motherboards" Soft: "The user prefers one CPU over another"

Learning to Synthesize [DTP18]

Interior design

Building design

Urban planning

Dimensions of Constraint Learning

- Types of constraints:
 - hard constraints define the set of valid assignments; used in SAT, LP, CP, answer set programming, ...
 - soft constraints define preferences among valid assignments; used in LP, all of operations research

Dimensions of Constraint Learning

- Types of constraints:
 - hard constraints define the set of valid assignments; used in SAT, LP, CP, answer set programming, ...
 - soft constraints define preferences among valid assignments; used in LP, all of operations research
- Learning techniques:
 - **search-based**: smartly enumerate the candidate theories and pick one that best matches the data
 - solver-based: encode the learning problem as a satisfaction or optimization problem and feed it to a solver

Dimensions of Constraint Learning

- Types of constraints:
 - hard constraints define the set of valid assignments; used in SAT, LP, CP, answer set programming, ...
 - soft constraints define preferences among valid assignments; used in LP, all of operations research
- Learning techniques:
 - **search-based**: smartly enumerate the candidate theories and pick one that best matches the data
 - solver-based: encode the learning problem as a satisfaction or optimization problem and feed it to a solver
- Are the examples available from the get-go?
 - Yes: use passive / offline / batch learning
 - No: use interactive learning

Gallia est omnis divisa in partes tres:

- Learning hard constraints
 - That is, learning the requirements themselves (e.g. the *rules* of sudoku or the nutritional requirements of diets)

Gallia est omnis divisa in partes tres:

- Learning hard constraints
 - That is, learning the requirements themselves (e.g. the *rules* of sudoku or the *nutritional requirements of diets*)
- Learning soft constraints
 - That is, learning preferences among feasible alternatives (e.g. cheaper diets that satisfy all requirements should be preferred)

Gallia est omnis divisa in partes tres:

- Learning hard constraints
 - That is, learning the requirements themselves (e.g. the *rules* of sudoku or the *nutritional requirements of diets*)
- Learning soft constraints
 - That is, learning preferences among feasible alternatives (e.g. cheaper diets that satisfy all requirements should be preferred)
- Learning hard & soft constraints interactively
 - Useful when examples are not readily available or usage of supervision is expensive and should be minimized

Learning Hard Constraints

- The simplest case: Boolean formulas
 - Learning conjunctions (monomials)
 - Learning k-CNF
- Search techniques
 - General-to-specific, Specific-to-general, Version spaces
 - Syntax-guided synthesis
- Applications / implementations

The simplest case: Boolean formulas

$$\mathcal{X} = \{0,1\}^n, \underbrace{\mathbf{X} = (X_1, \dots, X_n)}_{variables}, \underbrace{\mathbf{x} = (x_1, \dots, x_n)}_{assignment} \qquad \text{ $\#$ domain}$$
$$\mathcal{Y} = \{0,1\} \qquad \qquad \text{$\#$ labels}$$
$$\mathcal{H} = \{\text{candidate formulas ϕ on \mathbf{X}} \} \qquad \qquad \text{$\#$ hypotheses}$$

Examples:

• conjunctions / disjunctions of up to k literals

 $\mathcal{H} = \{L_{i_1} \lor \ldots \lor L_{i_k} : \text{ all } L$'s are literals}

conjunctive / disjunctive normal form (k-CNF, k-term DNF)

$$\mathcal{H} = \left\{ igwedge_c (L_{i_1} \lor \ldots \lor L_{i_k}) : \mathsf{all} \ L'\mathsf{s} \ \mathsf{are \ literals}
ight\}$$

for instance (Saturday \lor Sunday) \land Sunny $\land \neg$ Bored $\land \neg$ Sick ¹⁸

The simplest case: Boolean formulas

Let $\phi^* \in \mathcal{H}$ be a hidden Boolean concept and

$$\mathcal{D} = \{ (\mathbf{x}_k, y_k) \}_{k=1,...,s} \subseteq \mathcal{X} \times \mathcal{Y} \qquad \# \text{ dataset}$$

where $y_k = \mathbb{1}\{ \mathbf{x} \models \phi^* \}$

$$\ell(\phi, \mathcal{D}) = |\{k : \mathbb{1}\{x_k \models \phi\} \neq y_k\}| \qquad \# \ \mathbf{0}-\mathbf{1} \ \mathsf{loss}$$

Learning amounts to finding $\phi \in \mathcal{H}$ with minimal (zero) loss

find $\phi \in \mathcal{H}$ s.t. $\ell(\phi, \mathcal{D}) = 0$

This is an search problem

Assumption 1: there is a ground-truth hypothesis ϕ^* and it **belongs** to \mathcal{H} (read: \mathcal{H} is "expressive enough")

Assumption 2: example labels match ϕ^* , i.e., $y_k = \phi^*(\mathbf{x}_k)$ for all k = 1, ..., s (read: there is no annotation noise)

This is the **realizable setting**: a candidate ϕ with zero loss exists and can be found by minimizing the loss [Mit81]

A bit of theory

Learning amounts to finding $\phi \in \mathcal{H}$ with minimal (zero) loss find $\phi \in \mathcal{H}$

```
s.t. \ell(\phi, \mathcal{D}) = 0
```

This also **Empirical Risk Minimization** (ERM) [Vap13].

This is **good**!

- If *H* is "not too expressive" (e.g. finite or bounded VC dimension), ERM is PAC learnable
- This means that if enough examples s are given, the hypothesis found by ERM behaves like the true one:

$$\mathsf{Pr}((\boldsymbol{x} \models \phi^*) \Leftrightarrow (\boldsymbol{x} \models \phi^{\mathsf{ERM}})) = 1$$

• ..., but it doesn't say anything about $\phi^{\mathsf{ERM}} = \phi^*$

Start from $\phi = \mathbf{x}_1$, then check each literal in turn. Example:

Current hypothesis

$$\phi = \neg X_1 \wedge X_2 \wedge \neg X_3 \wedge X_4 \wedge \neg X_5$$

• Is $\neg X_1$ necessary? Generate

$$\mathbf{x}' = \{\mathbf{X}_1, \mathbf{X}_2, \neg \mathbf{X}_3, \mathbf{X}_4, \neg \mathbf{X}_5\}$$

If \mathbf{x}' is an example, check that y = 1:

- if positive, $\neg X_1$ is not necessary, delete it from ϕ
- if negative, $\neg X_1$ is necessary, keep it

Only n + 1 questions needed to recover ϕ^* (Find-S)

Consider a hidden concept $\phi^* = X_2 \wedge X_4$

Example
$$X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad y$$

 $x_1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad \psi = \neg X_1 \land X_2 \land X_3 \land X_4 \land X_5$

Consider a hidden concept $\phi^* = X_2 \wedge X_4$

Consider a hidden concept $\phi^* = X_2 \wedge X_4$

Consider a hidden concept $\phi^* = X_2 \wedge X_4$

The "generalization" of all **positive** examples is:

$$\phi = X_2 \wedge X_3 \wedge X_4$$

Intuition about PAC: if $x \sim Pr(X)$ is "diffuse" enough and if there is no noise, eventually we will some $x' = (\cdot, \cdot, 0, \cdot, \cdot)$ with y' = 1, which allows us to find $\phi' = X_2 \wedge X_4 = \phi^*$.

Pros:

- Discovers a hypothesis $\phi \in VC(\mathcal{D})$
- Only needs positive examples

Cons:

 Discovers a most specific hypothesis only – unclear why we should focus on that (read: it may be too cautious)

Learning CSPs

Constraint satisfaction problems (CSPs) are like concepts but:

- Variables can be non-Boolean, usually X ⊆ Zⁿ (although continuous variables have been considered for LP)
- Constraints can be non-Boolean, e.g.

 $X_1 \ge X_2, \quad X_1 \ne X_2, \quad \text{alldiff}(\{X_i : i \in \mathcal{I}\})$

(We used alldiff in sudoku)

Propositionalization can encode any CSP to Bool vars only:

$$\begin{array}{c|c|c} (X_1,X_2,X_3) & X_1 < X_2 & X_1 > X_2 & X_1 = X_2 & X_1 < X_3 & \dots & y \\ (1,2,3) & 1 & 0 & 0 & 1 & \dots & 1 \\ (2,3,1) & 1 & 0 & 0 & 0 & \dots & 0 \end{array}$$

Constraint satisfaction problems (CSPs) are like concepts but:

- Variables can be non-Boolean, usually X ⊆ Zⁿ (although continuous variables have been considered for LP)
- Constraints can be non-Boolean, e.g.

 $X_1 \ge X_2, \quad X_1 \ne X_2, \quad \text{alldiff}(\{X_i : i \in \mathcal{I}\})$

(We used alldiff in sudoku)

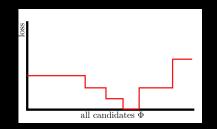
This makes **identifiability** harder: $X_1 = X_2$ and

IOW: syntactically different theories are semantically equivalent

Learning as search

Learning amounts to finding $\phi \in \mathcal{H}$ with minimal (zero) loss

```
find \phi \in \mathcal{H}
s.t. \ell(\phi, \mathcal{D}) = 0
```



This is a large, hard problem:

- 1. large because \mathcal{H} is exponential in the number of variables,
- 2. hard because combinatorial: all variables are discrete

Generate-and-test is the simplest possible algorithm:

enumerate all $\phi \in \mathcal{H}$ and keep the ones with zero loss

Generate-and-test is the simplest possible algorithm:

enumerate all $\phi \in \mathcal{H}$ and keep the ones with zero loss

• Obviously correct :-)

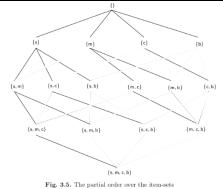
Generate-and-test is the simplest possible algorithm:

enumerate all $\phi \in \mathcal{H}$ and keep the ones with zero loss

- Obviously correct :-)
- Obviously inefficient :-)

Not viable if \mathcal{H} is very large, e.g. $n \ge 20$, but one can avoid to enumerate trivially invalid candidates – **used it in practice**

Also make sure not to enumerate twice



This avoids enumerating the same theory twice

These rules can become pretty tricky: [KTDR19] learns non-linear mathematical programs from **tensor** data \rightarrow plenty of indices \rightarrow four-level hierarchical lexicographic ordering!

Learning spreadsheet formulas with TaCLe [KPGDR17]

ID	Salesperson	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Total	Rank	Label	Items sold total	Max items solo	1
	1 Diana Coolen	353	378	396	387	1514	2	Great	34	2	D
	2 Marc Desmet	370	408	387	386	1551	1	Great	29	1	
	3 Kris Goossens	175	146	167	203	691	3	Low	19	1	9
	4 Birgit Kenis	93	98	96	105	392	4	Low	17	1	5
Block 1	Block 2			Bloc	:k 3			Block 4	Blo	ck 5	
= T1[:, 1]	= T1[:, 2]			= T1[:,	, 3:8]			= T1[:, 9]	= T1[:,	10:11]	
				T2					6-1	Items sold	
									Salesperson	items sold	-
	Total	991	1030	1046	1081	4148			Diana Coolen		5
	Average	247.75	257.5	261.5	270.25	1037	Block 6		Marc Desmet	1	D
	Max	370	408	396	387	1551	= T2[1:4, :]		Marc Desmet		В
	Min	93	98	96	105	392			Diana Coolen		Э
									Birgit Kenis	1	5 T3
Quarter	Income	Expenses	Total		Customer	Contact	Contact Name		Marc Desmet		B
Q1	991	212	779		Frank	1	Diana Coolen		Birgit Kenis		2
Q2	1030	710	1099	т4	Sarah	3	Kris Goossens		Diana Coolen	2	D
Q3	1046	137	2008	14	George	3	Kris Goossens	T5	Marc Desmet		3
Q4	1081	240	2849		Mary	2	Diana Coolen		Kris Goossens	1	Э
Block 10		Block 11			Tim	4	Birgit Kenis		Block 8	Block 9	
= T4[:, 1]		= T4[:, 2:4]			Block 12	Block 13	Block 14		= T3[:, 1]	= T3[:, 2]	
					= T5[:, 1]	= T5[:, 2]	= T5[:, 3]				

$SERIES(T_1[:, 1])$ $T_2[1, :] = SUM_{col}(T_1[:, 3:7])$	
$T_1[:, 1] = RANK(T_1[:, 5])^*$ $T_2[2, :] = AVERAGE_{col}(T_1[:, 3:7])$	
$T_1[:, 1] = RANK(T_1[:, 6])^*$ $T_2[3, :] = MAX_{col}(T_1[:, 3:7])$	
$T_1[:, 1] = RANK(T_1[:, 10])^*$ $T_2[4, :] = MIN_{col}(T_1[:, 3:7])$	
$T_1[:, 8] = RANK(T_1[:, 7])$ $T_4[:, 2] = SUM_{col}(T_1[:, 3:6])$	
$T_{1}[:,8] = RANK(T_{1}[:,3])^{*} \qquad T_{4}[:,4] = PREV(T_{4}[:,4]) + T_{4}[:,2] - T_{4}[:,4] = PREV(T_{4}[:,4]) + T_{4}[:,4] = PREV(T_{4}[:,4$:, 3]
$T_1[:,8] = \textit{RANK}(T_1[:,4])^* \\ T_5[:,2] = \textit{LOOKUP}(T_5[:,3],T_1[:,2],T_1[:,1])^* \\ T_5[:,2] = \textit{LOOKUP}(T_5[:,3],T_1[:,2],T_1[:,1])^* \\ T_5[:,2] = \textit{LOOKUP}(T_5[:,3],T_1[:,2],T_1[:,2])^* \\ T_5[:,2] = \textit{LOOKUP}(T_5[:,3],T_1[:,2])^* \\ T_5[:,2] = \textit{LOOKUP}(T_5[:,3])^* \\ T_5[:,2] = \textit{LOOKUP}(T_5[:,2])^* \\ T_5[:,2] = \textit{LOOKUP}(T_5[:,2])^* \\ T_5[:,2] = \texttt{LOOKUP}(T_5[:,2])^* \\ T_5[:,2] = \texttt{LOOKUP}(T_5[:,2])^* \\ T_5[:,2] = \texttt$)*
$T_1[:, 7] = SUM_{mw}(T_1[:, 3:6])$ $T_5[:, 3] = LOOKUP(T_5[:, 2], T_1[:, 1], T_1[:, 2])$)
$T_1[:,10] = \textit{SUMIF}(T_3[:,1],T_1[:,2],T_3[:,2]) \\ T_1[:,11] = \textit{MAXIF}(T_3[:,1],T_1[:,2],T_3[:,2]) \\ T_1[:,11] = \textit{MAXIF}(T_3[:,1],T_3[:,2]) \\ T_1[:,11] = \texttt{MAXIF}(T_3[:,1],T_3[:,2]) \\ T_1[:,11] = \texttt{MAXIF}(T_3[:,1],T_3[:,2]) \\ T_1[:,11] = \texttt{MAXIF}(T_3[:,1],T_3[:,2]) \\ T_1[:,11] = \texttt{MAXIF}(T_3[$	

- vector = row or column
- block = type-consistent continguous vectors
- only constraints compatible with observed blocks are enumerated
 - using MiniZinc!

ModelSeeker

General-to-specific (or top-down): start from most general hypothesis φ ∈ H, e.g., φ = ⊤, and gradually specialize it to exclude negative examples

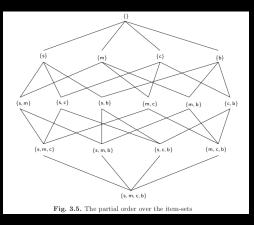
i.e. add constraints as we go

 Specific-to-general (or bottom-up): start from most specific hypothesis φ and gradually generalize it to cover positive examples.

i.e. remove constraints as we go

Using generalization \succeq_g

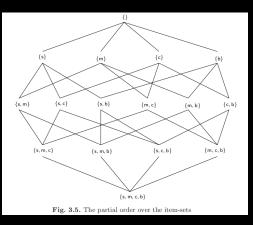
Lattice of concepts over $\{S, M, C, B\}$ w.r.t. generalization relation



where the **generalization relation** $\phi \succeq_g \phi'$ iff ϕ covers (labels as positive) all instances covered by ϕ' and possibly some more

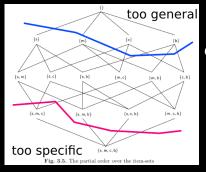
Using generalization \succeq_g

Lattice of concepts over $\{S, M, C, B\}$ w.r.t. generalization relation



The version space is the set of candidates in \mathcal{H} consistent with all examples: $VS(\mathcal{D}) = \{h \in \mathcal{H} : \ell(h, \mathcal{D}) = 0\}$

Lattice of concepts over $\{S, M, C, B\}$ w.r.t. generalization relation



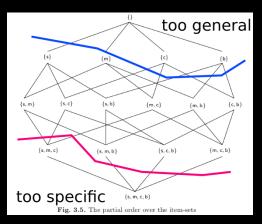
Consider examples:

 $\{1, 1, 0, 0\}, negative \\ \{1, 1, 1, 0\}, positive$

The version space is the set of candidates in \mathcal{H} consistent with all examples: $VS(\mathcal{D}) = \{h \in \mathcal{H} : \ell(h, \mathcal{D}) = 0\}$

Bi-directional search

Lattice of concepts over $\{S, M, C, B\}$ w.r.t. generalization relation



Bi-directional search iteratively shrinks the version space by observing more and more examples (more later)

Learning amounts to finding $\phi \in \mathcal{H}$ with minimal (zero) loss

find $\phi \in \mathcal{H}$ s.t. $\ell(\phi, \mathcal{D}) = 0$

Just encode this as propositional satisfiability (SAT)!

- SAT is NP-complete in general,
- but SAT (and related) solvers can be very efficient in practice
- also avoid encoding all examples / constraints from the get go [KPGDR17]

The advantage is that learning is certifiably exact!

Recall linear programs in canonical form:

$$\max_{\mathbf{x}} \mathbf{c} \cdot \mathbf{x}$$
 (1)

s.t.
$$a_j \cdot \mathbf{x} \leq b_j$$
 $j = 1, \dots, m$ (2)

and learn A and **b** from positive–negative examples labelled by a hidden, ground-truth polytope A^* , **b**^{*}.

Notation

Name	Constant
$i=1,\ldots,n$	Index over variables
$j=1,\ldots,m$	Index over constraints
$k=1,\ldots,s$	Index over examples
$(\mathbf{x}^k, \mathbf{y}^k)$	The <i>k</i> th example: instance x^k and label y^k
$a_{max} \in \mathbb{R}$	Maximum value for $a_{j,i}$
$b_{max} \in \mathbb{R}$	Maximum value for b_j
	Decision variable
$a_{j,i} \in \mathbb{R}$	Learned coefficients
$b_j \in \mathbb{R}$	Learned biases
$b_j \in \mathbb{R}$	Learned biases Auxiliary variable

Learning LPs with IncaLP

$$\begin{aligned} \min_{A,b} & \sum_{i,j} z_{j,i}^{a} + \sum_{j} z_{j}^{b} & (3) \\ \text{s.t.} & \mathbf{a}_{j} \cdot \mathbf{x}^{k} \leq b_{j} & \forall j, k : y^{k} = 1 & (4) \\ & \sum_{j} v_{k,j} \geq 1 & \forall k : y^{k} = 0 & (5) \\ & \mathbf{a}_{j} \cdot \mathbf{x}^{k} \geq M v_{k,j} - M + b_{j} + \epsilon & \forall j, k : y^{k} = 0 & (6) \\ & \sum_{i} z_{j,i}^{a} \geq z_{j}^{b} & \forall j & (7) \\ & -a_{max} z_{j,i}^{a} \leq a_{j,i} \leq a_{max} z_{j,i}^{a} & \forall i, j & (8) \\ & -b_{max} z_{j}^{b} \leq b_{j} \leq b_{max} z_{j}^{b} & \forall j & (9) \end{aligned}$$

IncaLP

The IncaLP algorithm: *m* is the number of constraints, D are the examples, and θ is the decision tree.

- 1: procedure LEARNINCREMENTAL (m, \mathcal{D}, θ)
- 2: $i \leftarrow 1$

3:
$$\mathcal{D}_i \leftarrow \text{Choose}(\mathcal{D}, \theta, 20)$$

4:
$$\mathcal{V}_i \leftarrow \text{all misclassified examples in } \mathcal{D} \setminus \mathcal{D}_i$$

5: while
$$\mathcal{V}_i$$
 is not empty **do**

6:
$$A_i, \mathbf{b}_i \leftarrow \text{SOLVE}(\text{ENCODE}(m, \mathcal{D}_i)) \triangleright \text{Eq. 3-9}$$

7: **if** could not find
$$A_i$$
, b_i consistent with \mathcal{D}_i then

8: **return** infeasible

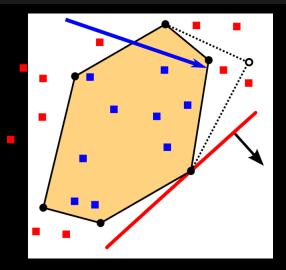
9:
$$\mathcal{V}_i \leftarrow \text{all misclassified examples in } \mathcal{D} \setminus \mathcal{D}_i$$

10:
$$\mathcal{D}_{i+1} \leftarrow \mathcal{D}_i \cup \text{Choose}(\mathcal{V}_i, \theta, 1)$$

11: $i \leftarrow i + 1$

12: **return** *A_i*, *b_i*

IncaLP



Choice of **which examples to add** is driven by a decision tree heuristic: not strictly necessary, but it does speed things up

IncaLP

The non-parametric IncaLP algorithm: \mathcal{D} are the examples.

- 1: procedure LEARNNOPARAMS(\mathcal{D})
- 2: $m \leftarrow 1$
- 3: $\theta \leftarrow \text{LearnDT}(\mathcal{D})$
- 4: while true do
- 5: $A_i, \boldsymbol{b}_i \leftarrow \text{LearnIncremental}(\boldsymbol{m}, \mathcal{D}, \theta)$
- 6: **if** could not find A_i , **b_i then**
- 7: $m \leftarrow m+1$
- 8: **else**
- 9: return A_i, \boldsymbol{b}_i

Guaranteed to terminate in the realizable setting

Learning amounts to finding $\phi \in \mathcal{H}$ with minimal (zero) loss

```
find \phi \in \mathcal{H}
s.t. \ell(\phi, \mathcal{D}) = 0
```

In principle, any search algorithm can be used:

- genetic algorithms (see e.g. [PK17]), tabu search, simulated annealing, ant colony optimization...
- any form of **stochastic local search** suitable for combinatorial optimization, and there are plenty [HS04]

Many of these procedures can be tuned for **anytime** solving – i.e. if you stop them at any time, they give you *some* solution

(However, they may never find a perfect solution)

Links to machine learning

- Constraint learning from positive–negative examples is to some extent equivalent to binary classification: learn a hypothesis h : X → {0,1} with low loss
 - Indeed, concept learning is classification
 - Learning constraints of linear programs is equivalent to learning a convex polytope [GKKN18]
- This means that in principle standard machine learning tools can be used here too (yeah, also neural nets)
- **However** the learned model is not used only for prediction! e.g. learned CSP can be analyzed, debugged, explained, adapted by some expert, *etc.*

- Most theory in machine learning focuses on guaranteeing generalization, i.e., finding conditions under which the learned classifier generalizes to instances *not* in the training set
- In the realizable case, this
- No though is given to identifiability: the learned model must behave like the gold standard, but it may be different!
 (Same issue in Bayesian networks etc.)
 The theory says nothing about this.

Learning Soft Constraints

- Deal with conflicting requirements (e.g. multi-objective optimization)
- Combine knowledge and uncertainty (probabilistic relational models, fuzzy logic)
- Combine statistical and relational approaches to learning (statistical relational learning)

E.g: Markov Logic networks

Definition

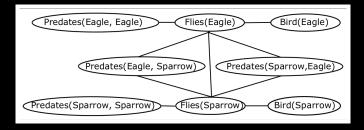
- A Markov Logic Network (MLN) *L* is a set of pairs (*F_i*, *w_i*) where:
 - *F_i* is a formula in first-order logic
 - w_i is a real number (the weight of the formula)
- Applied to a finite set of constants C = {c₁,..., c_{|C|}} it defines a Markov network M_{L,C}:
 - *M_{L,C}* has one binary node for each possible grounding of each atom in *L*. The value of the node is 1 if the ground atom is true, 0 otherwise.
 - *M_{L,C}* has one feature for each possible grounding of each formula *F_i* in *L*. The value of the feature is 1 if the ground formula is true, 0 otherwise. The weight of the feature is the weight *w_i* of the corresponding formula

Markov Logic networks

Intuition

- A MLN is a *template* for Markov Networks, based on logical descriptions
- Single atoms in the template will generate nodes in the network
- Formulas in the template will be generate cliques in the network
- There is an edge between two nodes iff the corresponding ground atoms appear together in at least one grounding of a formula in *L*

Markov Logic networks: example



Ground network

• A MLN with two (weighted) formulas:

 $w_1 \quad \forall x \ \overline{(Bird(x) \Rightarrow Flies(x))}$

 $w_2 \quad \forall x, y \text{ (Predates(x,y) \land Bird(y) \Rightarrow Bird(x))}$

- applied to a set of two constants {Sparrow, Eagle}
- generates the Markov Network shown in figure

Joint probability

- A ground MLN specifies a joint probability distribution over possible worlds (i.e. truth value assignments to all ground atoms)
- The probability of a possible world x is:

$$p(x) = \frac{1}{Z} \exp\left(\sum_{i=1}^{F} w_i n_i(x)\right)$$

where:

- the sum ranges over formulas in the MLN (i.e. clique templates in the Markov Network)
- $n_i(x)$ is the number of true groundings of formula F_i in x
- The partition function Z sums over all possible worlds (i.e. all possible combination of truth assignments to ground atoms)

Markov Logic networks

Inference

• Compute value of x with maximal probability

$$x^* = \underset{x}{\operatorname{argmax}} \frac{1}{Z} \exp\left(\sum_{i=1}^{F} w_i n_i(x)\right) = \underset{x}{\operatorname{argmax}} \sum_{i=1}^{F} w_i n_i(x)$$

 \Rightarrow boils down to weighted MAX-SAT.

• Compute value of x with max. probability given evidence e

$$x^* = argmax_x p(x|e)$$

where evidence fixes the value of some of the variables in x

Learning

- Learn weights of (given) formulas
 - parameter learning
- Learn both formulas and weights
 - structure learning

Weighted Constraint Satisfaction Problems (wCSP)

Definition

Given

• A set of pairs
$$\{(c_i, w_i)\}_{i=1}^n$$
 where:

- c_i is a (soft) constraint
- $w_i \in {\rm I\!R}$ is a weight
- An indicator function 1 {x ⊨ c} evaluating to one if c is satisfied by x, and zero otherwise

Find

$$x^* = rgmax_{x \in \mathcal{X}} f(x) = rgmax_{x \in \mathcal{X}} \sum_{i=1}^n w_i \cdot \mathbb{1}\{x \models c_i\}$$

Note Hard constraints can be incorporated in \mathcal{X}

Learning weights for wCSP

Preference learning

Given

- A set of (soft) constraints $\{(c_i)\}_{i=1}^n$
- A set of examples pairs $\mathcal{D} = \{(x_j, x_j')\}_{j=1}^m$ such that for all j it should hold that

$$f(x_j) > f(x'_j)$$

• An **objective** function J(w, D)

Find

• A set of weights \hat{w} minimizing the objective:

$$\hat{w} = \operatorname*{argmin}_{w} J(w, \mathcal{D})$$

E.g. SVM ranking

$$\min_{w} \qquad ||w||^{2} + \lambda \sum_{j=1}^{m} \xi_{j}$$
s.t $f(x_{j}) - f(x'_{j}) \ge 1 - \xi_{j} \quad \forall j \in [1, n]$

where:

- ξ_j is a penalty for not ranking x_j higher than x'_j with a large enough margin
- $||w||^2$ is a regularization term (margin is $2/||w|| \rightarrow$ large margin separation)
- $\lambda \in R^+$ is a parameter trading off margin and correct rankings

Learning weights for wCSP

Structured-output learning Given

- A set of (soft) constraints $\{(c_i)\}_{i=1}^n$
- A set of input-output pairs $\mathcal{D} = \{(x_j, y_j)\}_{j=1}^m$ such that for all j it should hold that

$$y_j = \operatorname*{argmax}_{y \in \mathcal{Y}} f(x_j, y_j)$$

• An **objective** function J(w, D)

Find

• A set of weights \hat{w} minimizing the objective:

$$\hat{w} = \operatorname*{argmin}_{w} J(w, \mathcal{D})$$

Structured-output learning for wCSP

E.g. Structured-output SVM

$$\min_{w} \qquad ||w||^{2} + \lambda \sum_{j=1}^{m} \xi_{j}$$
s.t $f(x_{j}, y_{j}) - f(x_{j}, y_{j}') \ge 1 - \xi_{j} \quad \forall j \in [1, n] \quad \forall y_{j}' \neq y_{j}$

where:

 ξ_j is a penalty for not ranking y_j higher than any alternative output y'_i with a large enough margin

Problem

The number of constraints is equal to $m \times (|\mathcal{Y}| - 1)$ and is typically exponential in the number of output variables

Structured-output SVM for wCSP

Cutting plane algorithm

- Initialize weights w = 0 and set of constraints S_j = Ø for each example j
- 2. While constraint added, for each example (x_j, y_j)

2.1 Check penalty using current S_j

$$\xi_j = \max_{y_j' \in S_j} 1 + f(x_j, y_j') - f(x_j, y_j) \quad [ext{weighted CSP problem!!}]$$

2.2 Check penalty in full space ${\cal Y}$

 $\overline{\xi_j^{new}} = \max_{y'_j \neq y_j} 1 + f(x_j, y'_j) - f(x_j, y_j) \quad \text{[weighted CSP problem!!]}$

2.3 If
$$\xi_j^{new} - \xi_j > \epsilon$$

2.3.1 Add constraint and update S_j
2.3.2 Retrain

Weighted Constraint Optimization Problems (wCOP)

(possible) Definition

Given

- A set of triplets $\{(c_i, w_i, \phi_i)\}_{i=1}^n$ where:
 - *c_i* is a (soft) constraint
 - $w_i \in {\rm I\!R}$ is a weight
 - φ_i is a cost function mapping c_i and x to a real value (e.g. a measure of how far x is from satisfying c_i)

Find

$$x^* = \operatorname*{argmin}_{x \in \mathcal{X}} f(x) = \operatorname*{argmin}_{x \in \mathcal{X}} \sum_{i=1}^n w_i \cdot \phi(x, c_i)$$

Note

It is more natural to model the problem as cost minimization

Learning weights for wCOP

Preference learning

Given

- A set of (soft) constraints and cost functions $\{(c_i, \phi_i)\}_{i=1}^n$
- A set of examples pairs $\mathcal{D} = \{(x_j, x_j')\}_{j=1}^m$ such that for all j it should hold that

$$f(x_j) > f(x'_j)$$

• An **objective** function J(w, D)

Find

• A set of weights \hat{w} minimizing the objective:

$$\hat{w} = \operatorname*{argmin}_{w} J(w, \mathcal{D})$$

E.g. SVM ranking

$$\min_{w} \qquad ||w||^{2} + \lambda \sum_{j=1}^{m} \xi_{j}$$
s.t $f(x_{j}) - f(x'_{j}) \ge 1 - \xi_{j} \quad \forall j \in [1, n]$

where:

- ξ_j is a penalty for not ranking x_j higher than x'_j with a large enough margin
- $||w||^2$ is a regularization term (margin is $2/||w|| \rightarrow$ large margin separation)
- $\lambda \in R^+$ is a parameter trading off margin and correct rankings

Learning weights for wCOP

Structured-output learning Given

- A set of (soft) constraints and cost functions $\{(c_i, \phi_i)\}_{i=1}^n$
- A set of input-output pairs D = {(x_j, y_j)}^m_{j=1} such that for all j it should hold that

$$y_j = \operatorname*{argmin}_{y \in \mathcal{Y}} f(x_j, y_j)$$

• An **objective** function J(w, D)

Find

• A set of weights \hat{w} minimizing the objective:

$$\hat{w} = \mathop{\mathrm{argmin}}_{w} J(w, \mathcal{D})$$

Structured-output learning for wCOP

E.g. Structured-output SVM

$$\min_{w} \qquad ||w||^{2} + \lambda \sum_{j=1}^{m} \xi_{j}$$
s.t $f(x_{j}, y'_{j}) - f(x_{j}, y_{j}) \ge 1 - \xi_{j} \quad \forall j \in [1, n] \quad \forall y'_{j} \neq y_{j}$

where:

 ξ_j is a penalty for not giving y_j a lower cost than to any alternative output y'_i with a large enough margin

Problem

The number of constraints is equal to $m \times (|\mathcal{Y}| - 1)$ and is typically exponential in the number of output variables

Structured-output SVM for wCOP

Cutting plane algorithm

- Initialize weights w = 0 and set of constraints S_j = Ø for each example j
- 2. While constraint added, for each example (x_j, y_j)

2.1 Check penalty using current S_j

 $\xi_j = \max_{y'_j \in S_j} 1 + f(x_j, y_j) - f(x_j, y'_j) \quad \text{[weighted COP problem!!]}$

2.2 Check penalty in full space ${\cal Y}$

 $\xi_j^{\text{new}} = \max_{y'_j \neq y_j} 1 + f(x_j, y_j) - f(x_j, y'_j) \quad \text{[weighted COP problem!!]}$

2.3 If
$$\xi_j^{new} - \xi_j > \epsilon$$

2.3.1 Add constraint and update S_j
2.3.2 Retrain

Selecting constraints and learning weights for wCOP

Constraint Selection and Preference learning Given

- A set of candidate (soft) constraints and cost functions $C = \{(c_i, \phi_i)\}_{i=1}^n$
- A set of examples pairs D = {(x_j, x'_j)}^m_{j=1} such that for all j it should hold that

$$f(x_j) > f(x'_j)$$

• An **objective** function J(w, D)

Find

• A subset of the constraints $\hat{\mathcal{C}} \subseteq \mathcal{C}$ and a set of weights \hat{w} s.t.:

$$(\hat{\mathcal{C}}, \hat{w}) = \operatorname*{argmin}_{\mathcal{C}' \subseteq \mathcal{C}} \operatorname*{argmin}_{w \in \mathbb{R}^{|\mathcal{C}'|}} J(w, \mathcal{D})$$

2-norm regularization

$$J(w) = ||w||^2 + \lambda E(w)$$

- Penalizes weights by (squared) Euclidean norm
- Weights with less influence on error get smaller values
- No explicit bias towards exactly zero weights

1-norm regularization

$$J(w) = |w| + \lambda E(w)$$

- Penalizes weights by sum of absolute values
- Encourages less relevant weights to be exactly zero (sparsity inducing norm)

Constraint Selection and Preference learning for wCOP

E.g. SVM ranking with 1-norm regularization

$$\min_{w} |w| + \lambda \sum_{j=1}^{m} \xi_j$$
s.t $f(x_j) - f(x'_j) \ge 1 - \xi_j \quad \forall j \in [1, n]$

where:

- ξ_j is a penalty for not ranking x_j higher than x'_j
- |w| is a sparsity inducing regularization term
- $\lambda \in R^+$ trades off sparsity and correct rankings

Note

Structured-output learning can also be adapted by replacing two-norm with one-norm

Learning constraints and weights for wCSP

Constraint Learning and Preference learning Given

- A language \mathcal{L} defining valid constraints
- A set of examples pairs D = {(x_j, x'_j)}^m_{j=1} such that for all j it should hold that

$$f(x_j) > f(x'_j)$$

• An **objective** function J(w, D)

Find

 A set of constraints valid according to the language L and a set of weights ŵ s.t.:

$$(\hat{\mathcal{C}}, \hat{w}) = \operatorname*{argmin}_{\mathcal{C}' \in \mathcal{L}} \operatorname*{argmin}_{w \in \mathbb{R}^{|\mathcal{C}'|}} J(w, \mathcal{D})$$

Pyconstruct is a Python library for soft constraint learning (both wCSPs and wCOPs) using structured-output prediction. The wCOP is encoded in **MiniZinc**.

URL: github.com/unitn-sml/pyconstruct

Constraint Learning and Preference learning for wCSP (hints)

Two step approach

- 1. Run hard constraint learning algorithm to get set of candidate constraints $\ensuremath{\mathcal{C}}$
- 2. Run constraint selection and preference learning on $\ensuremath{\mathcal{C}}$

Combined approach

- 1. Start with empty set of constraints $\mathcal{C} = \varnothing$
- 2. While no improvement
 - 2.1 Use language bias from hard constraint learning to generate candidate extensions \mathcal{C}' of constraints in \mathcal{C}
 - 2.2 Replace C with C'
 - $2.3\,$ Run constraint selection and preference learning on ${\cal C}$
 - $2.4\,$ Discard zero weight constraints from ${\cal C}$

Interactive Learning

What is interactive learning good for?

- $1. \ \mbox{To extract knowledge from an expert}$
- 2. To elicit the preferences of a customer by asking simple questions about alternative products
- 3. To ask the labels of the most informative instances only, esp. if supervision is expensive
- 4. To speed learning up by asking smart queries

Note: related to *active learning* and *preference elicitation*, but not quite the same

From offline to interactive

There is a hidden, **target theory** C^* over domain \mathcal{X} .

Offline:

- **Given** instances x_i labelled by $y_i = \mathbb{1}\{x_i \models C^*\}$
- Find a theory C s.t. $y_i = 1 \Leftrightarrow (x_i \models C)$ for $i = 1, \dots, n$

From offline to interactive

There is a hidden, **target theory** C^* over domain \mathcal{X} .

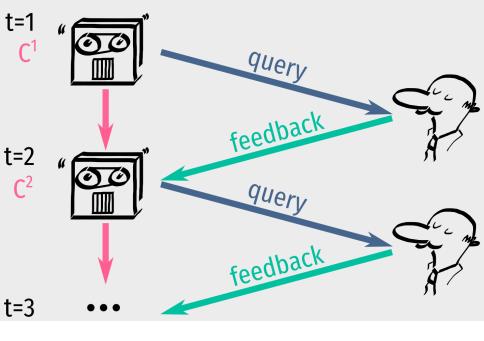
Offline:

- **Given** instances x_i labelled by $y_i = \mathbb{1}\{x_i \models C^*\}$
- Find a theory C s.t. $y_i = 1 \Leftrightarrow (x_i \models C)$ for $i = 1, \dots, n$

Interactive:

- Given an oracle that answers queries by consulting C*
- Find a theory C consistent with all answers

(The soft constraints case changes analogously.)



Assumption 1: there is a ground-truth hypothesis h^* and it is **contained** in \mathcal{H} (read: \mathcal{H} is "expressive enough")

Assumption 2: example labels match h^* , i.e., $y_k = h^*(\mathbf{x}_k)$ for all k = 1, ..., s (read: there is no annotation noise)

Assumption 3: the oracle is a domain expert

- Does always interpret/understand the queries
- Very dedicated, so always provides correct feedback

(Could also be a robot or a measurement apparatus)

An algorithm template

- 2: $C^1 \leftarrow \text{initial theory}$
- 3: for t = 1, ..., T do
- 4: Choose a query q (e.g. an instance $x \in \mathcal{X}$)
- 5: Ask q to the oracle
- 6: Receive feedback (e.g. whether x is a model of C^*)
- 7: $C^{t+1} \leftarrow \text{update } C^t \text{ according to feedback}$

```
8: return C^T
```

Questions:

- what kind of queries should be asked?
- how to pick an **informative** query?

For hard constraints

- membership: does x satisfy C*?
- partial membership: does x[V] satisfy C*?
- equivalence: are C^t and C^{*} logically equivalent? If not, provide a counter-example.

For **soft** constraints¹

- scoring: what is the score $f^*(x)$ of x?
- ranking: is $f^*(x) \ge f^*(x')$?
- improvement: give me a configuration x' s.t. $f^*(x') > f^*(x)$

¹E.g., for wCSP the real score is $f^*(x) = \sum_i w_i^* \mathbb{1}\{x \models c_i\}$

Interactive Learning of Hard Constraints

Membership Queries: Monomials [BDH⁺16]

• Current hypothesis (conjunction)

$$C^{t} = \{\neg X_{1}, X_{2}, \neg X_{3}, X_{4}, \neg X_{5}\}$$

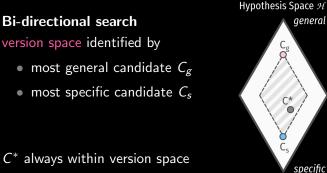
• To check whether $\neg X_1$ is really necessary, generate instance

$$x = \{X_1, X_2, \neg X_3, X_4, \neg X_5\}$$

- Ask membership query " $x \models C^*$?"
 - if positive, $\neg X_1$ is not necessary, delete it from C^t
 - if negative, $\neg X_1$ is necessary, keep it

Only #vars + 1 questions needed to recover C^*

Membership Queries: ConAcq [BDH+16]



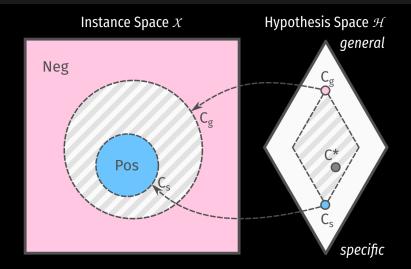
C* always within version space

Idea: pick
$$x \in Sol(C_g) \setminus Sol(C_s)$$

• If x is positive, generalize most specific candidate • If x is negative, specialize most generic candidate

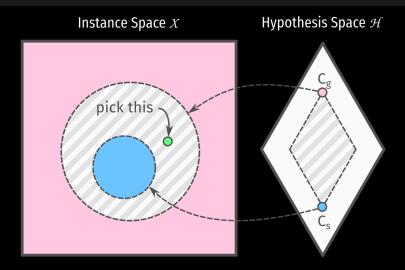
where
$$Sol(C) = \{x : x \models C\}$$

Version space and Instances



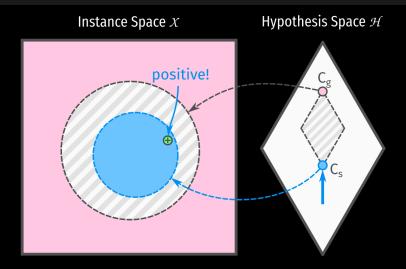
Note: Sol(*C*) is *inside* the circle

Query Selection



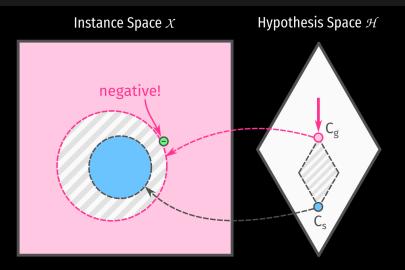
Select instance $x \in Sol(C_g) \setminus Sol(C_s)$

Positive \Rightarrow generalize C_s



Generalizing C_s = removing constraints from it

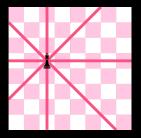
Negative \Rightarrow specialize C_g



Specializing C_g = adding constraints to it

Consider learning the Eight Queens Problem

Membership: does the board x satisfy *all* constraints? **Partial membership**: does the *partial* board x[V] violate at least *one* constraint?



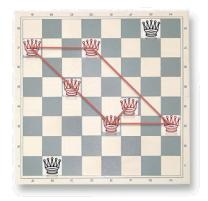
Partial membership is more informative: all completions of the partial configuration are also negative!

(It is also easier to answer from the oracle's perspective.)

Partial Queries

ask(2, 8, 4, 2, 6, 5, 1, 6)

Partial Queries



ask(2, 8, 4, 2, 6, 5, 1, 6) = No

Partial Queries

ask(2, 8, 4, 2, -, -, -, -) = No

Partial Queries

ask(2, 8, -, -, -, -, -) = Yes

Ask whether $C^t = C^*$. If not, provide a **counter-example** x s.t.

$$x \models C^* \land x \not\models C^t$$

or vice-versa.

More **powerful** than membership queries².

But **impractical**, even domain experts may have trouble answering them.

²Equivalence queries can be simulated by polynomially many membership queries [BKL017].

Soft Constraints

A user wishes to buy a custom PC. The PC is assembled from individual components: CPU, HDD, RAM, etc. Valid PC configurations must satisfy constraints, e.g. CPUs only work with compatible motherboards [TDP17]

Hard: "Intel CPUs are incompatible with AMD motherboards" Soft: "The user prefers one CPU over another"

Weighted Constraint Satisfaction Problems (wCSP)

Definition (same as before!) Given

- A set of pairs $\{(c_i, w_i)\}_{i=1}^n$ where:
 - c_i is a (soft) constraint
 - $w_i \in \mathbb{R}$ is a weight
- An indicator function 1{x ⊨ c} evaluating to one if c is satisfied by x and to zero otherwise

Find

$$x^* = \operatorname*{argmax}_{x \in \mathcal{X}} f(x) = \operatorname*{argmax}_{x \in \mathcal{X}} \sum_{i=1}^n w_i \cdot \mathbb{1}\{x \models c_i\}$$

Note hard constraints can be incorporated in \mathcal{X}

Assumption: hypothesis space \mathcal{H} contains (C^*, w^*)

• For weight learning, we can reconstruct \boldsymbol{w}^* perfectly

Depending on application: the oracle is not a domain expert

- May not interpret/understand the queries
- May provide **noisy** feedback

For instance, a customer on an e-commerce website.

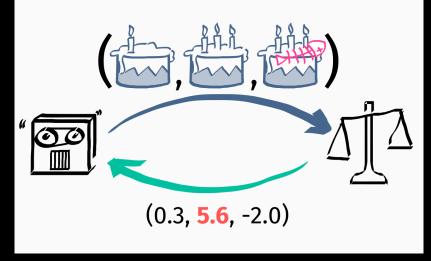
As a consequence, the version space may be empty!

The generic weight learning loop

1: procedure LEARNWEIGHTS (*C*, max iterations *T*) 2: $w^1 \leftarrow \text{initial weights}$ 3: for $t = 1, \dots, T$ do 4: Choose a query *q* (e.g. an instance *x*) 5: Ask *q* to the oracle 6: Receive feedback (e.g. the actual score $f^*(x)$) 7: $w^{t+1} \leftarrow \text{update } w^t \text{ according to feedback}$ 8: return w^T

Different instantiations for different types of queries / feedback

Scoring Queries (for a wCSP about cakes!)



A pretty ideal setup—can observe $f^*(x)$ directly!

Weight learning of wCSP via regression [RS04]

Same as offline case, except the dataset is built interactively

- 1: procedure LEARN (max iterations T, sample set size k)
- 2: $\mathcal{D} \leftarrow \varnothing$
- 3: $\boldsymbol{w} \leftarrow \text{initial weights}$
- 4: **for** t = 1, ..., T **do**
- 5: Sample $x_1, \ldots, x_k \in \operatorname{argmax}_{x \in \mathcal{X}} f(x; \boldsymbol{w})$
- 6: Present $\{x_1, \ldots, x_k\}$ to the oracle
- 7: $\mathcal{D} \leftarrow \mathcal{D} \cup \{(x_j, y_j)\}_{j=1}^k \quad (y_j = f^*(x_j) + \text{noise})$
- 8: $w^{t+1} \leftarrow \text{solve regression over } \mathcal{D}$

9: return w^T

Regression amounts to solving

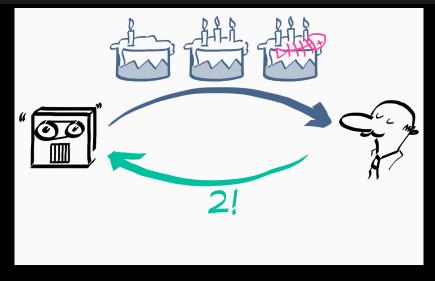
$$oldsymbol{w}^{t+1} \leftarrow \operatorname*{argmin}_{oldsymbol{w}} \sum_{(x,y) \in \mathcal{D}} (f(x;oldsymbol{w}) - y)^2$$

A scoring oracle may not be available



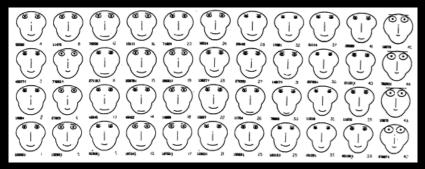
even experts may not be able to provide absolute scores reliably

Ranking Queries



relative judgements only - no more pesky absolute scores

What if it is hard to compare alternatives³, e.g. they are too similar or too diverse? What if there are just too many?



³From https://eagereyes.org/criticism/chernoff-faces

Preference learning for wCSP via ranking⁴

Offline case: SVM ranking

$$\min_{w} \qquad ||w||^2 + \lambda \sum_{j=1}^{m} \xi_j \\ s.t \quad f(x_j) - f(x'_j) \ge 1 - \xi_j \quad \forall j \in [1, n]$$

where:

•
$$f(x) = \sum_{i=1}^{n} w_i \cdot \mathbb{1}\{x \models c_i\}$$

- ξ_j is a penalty for not ranking x_j higher than x'_j with a large enough margin
- ||w||² is a regularization term (margin is 2/||w|| → large margin separation)

• **parameter** $\lambda \in R^+$ trades off margin and penalty

⁴Slide: Andrea Passerini

Ranking for weight learning of wCSP

Simple extension of offline ranking SVM

1: procedure LEARN (max iterations T)

2:
$$C^1, \boldsymbol{w}^1 \leftarrow \text{initial theory, initial weights}$$

3: **for**
$$t = 1, ..., T$$
 do

4: Choose
$$x, x'$$
 to be high scoring and reasonably diverse

5: Present
$$(x, x')$$
 to the oracle

6: Add oracle ranking
$$x \succcurlyeq x'$$
 to \mathcal{D}

7:
$$\boldsymbol{w}^{t+1} \leftarrow \text{learn ranking from } \mathcal{D}$$

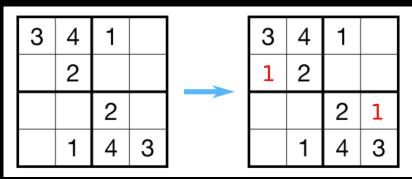
8: return w^T

To get high score / diverse x's solve, e.g.

$$\underset{x,x'}{\operatorname{argmax}} f(x; w) + f(x'; w) + \alpha \cdot d(x, x')$$
s.t. $d(x, x') \leq d_{\max}$

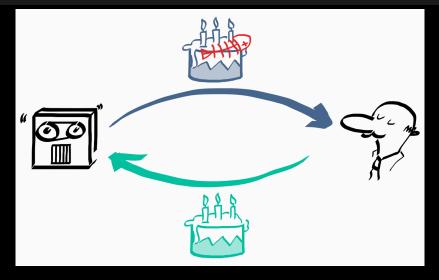
k-way inference can be slow

What if it is easy to manipulate the configurations?



It's possible to avoid "*k*-way inference" by asking the user to improve the current best configuration

Improvement Queries



boils down to a pairwise preference $f^*(\bar{x}^t) \ge f^*(x^t)$

Coactive Learning for weight learning of wCOP [SJ15]

Perceptron-based preference learning from improvement queries

- 1: procedure LEARN (max iterations T)
- 2: $C^1, w^1 \leftarrow \text{initial theory, initial weights}$
- 3: for t = 1, ..., T do

4:
$$x^t \leftarrow \operatorname{argmax}_{x \in \mathcal{X}} \sum_i w_i \mathbb{1}_i(x)$$

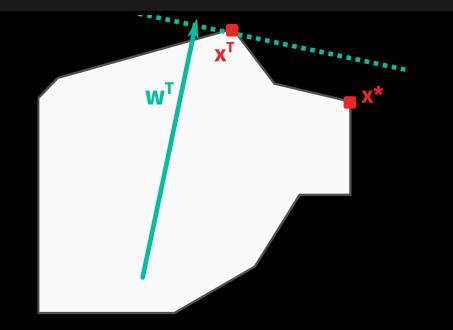
- 5: Present x^t to the oracle
- 6: Obtain improved configuration \bar{x}^t

7:
$$\boldsymbol{w}^{t+1} \leftarrow \boldsymbol{w}^t + \phi(\bar{x}^t) - \phi(x^t)$$

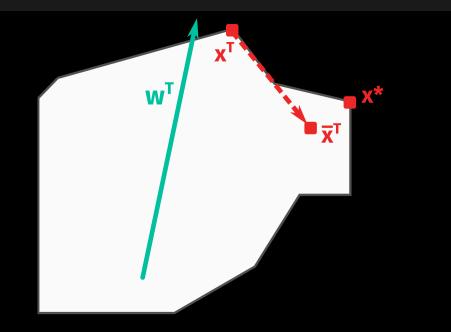
8: return C^T

Note quality of configurations approaches optimum as $O(1/\sqrt{T})$ under assumptions on the improvements

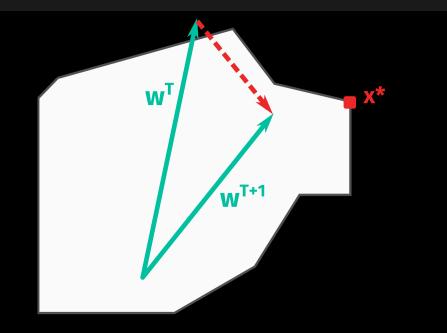
Coactive learning: iteration T



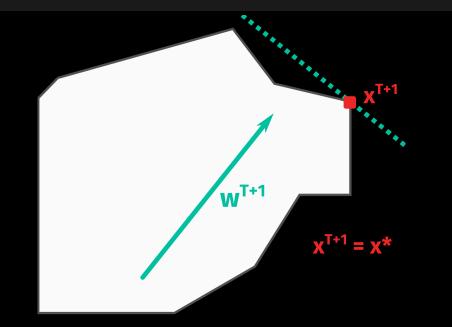
Coactive learning: iteration T



Coactive learning: iteration T



Coactive learning: iteration T + 1



Recall that constraints \approx features in wCSP

$$\mathbb{1}_i(x) = \mathbb{1}\{x \models c_i\} \qquad \forall i = 1, \dots, n$$

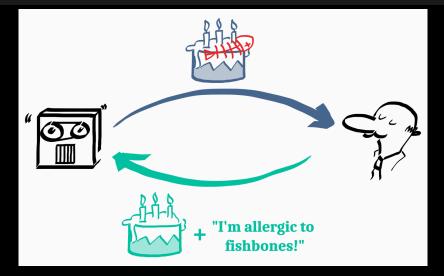
What if we don't have all of the constraints/features?

ldea

- If oracle improvement can't be explained by the learner (e.g. by linear spearability), a constraint is missing
- Ask for the missing constraint, acquire c_{n+1}

Add $\mathbb{1}_{n+1} = \mathbb{1}\{x \models c_{n+1}\}$ to the pool of features, proceed as usual with Coactive Learning

Critiquing Queries



add the critique to the constraints, update the feature space

A few remarks

- Can be proven to converge under assumptions, even if most constraints are acquired on-the-fly
- Not really "learning"
 - Critiquing queries provide the missing constraints

Once more: powerful oracles make learning easier

- How to combine learning of hard and soft constraints?
- What are the "best" queries in the soft setting?
- How to properly deal with rationally bounded oracles?
 e.g. how to combine technology and human interaction?
- How far can we push and/or guide the oracle?
 e.g. how to best exploit and control human abilities?

(and much more)

Wrapping up

- Interaction is fundamental when specifications and preferences are hard to specify upfront, can cut labeling cost and speed up learning
- **CSPs** can be learned via version space approaches (in the realizable setting)
- wCSP/wCOP weight learning can be cast as interactive ranking + smart query selection
- Different query types have different:
 - ability to learn from human non-experts
 - theoretical efficiency [Ang88, BDH+16]

Thank you!

Many topics related to interactive constraint learning

- Pool-based Active Learning
- Preference Elicitation (for interactive recommendation)
- Programming by Feedback [ASSS14]
- Inverse Combinatorial Optimization [Heu04]
- . . .

Pool-based Active Learning [Set12, Han14]

Given hidden decision function $f^* : \mathcal{X} \to \{\pm 1\}$, instances $x_1, \ldots, x_n \in \mathcal{X}$, and an oracle that labels instances with f^* **Find** a good estimate f of f^* with as few queries as possible

Remarks

- Like CP, focuses on quality of learned model $loss(f^*, f)$
- ... but geometrical flavor: SVMs, Gaussian Processes
- Many strategies in common (e.g. version spaces)

Query types: labeling queries (\approx membership), search queries (\approx equivalence), rationales and explanations, ...

Preference Elicitation [Bou02, PTV16]

Given products $x_1, \ldots, x_n \in \mathcal{X}$ and a user who ranks alternatives by relative preferrability

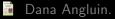
Find a good item $x \in \mathcal{X}$ with the least cognitive effort

If we knew the true user' scoring function f(x), it would be easy! But we don't, so we estimate it iteratively by asking queries

Remarks

- Must model **preferences**, similar to wCSP/wCOP
- wCSP/wCOP useful for recommending combinatorial items
- Unlike CP, only quality of recommendation x matters
- Learns approximation f of f* only as byproduct

Methods: Bayesian, minimax regret, online learning



Queries and concept learning.

Machine learning, 1988.

Riad Akrour, Marc Schoenauer, Michèle Sebag, and Jean-Christophe Souplet.

Programming by feedback.

In *International Conference on Machine Learning*, number 32, pages 1503–1511. JMLR. org, 2014.

Christian Bessiere, Abderrazak Daoudi, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Younes Mechqrane, Nina Narodytska, Claude-Guy Quimper, and Toby Walsh.

New approaches to constraint acquisition.

In Data Mining and Constraint Programming. 2016.

Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O'Sullivan.

Constraint acquisition.

Artificial Intelligence, 244:315–342, 2017.

Craig Boutilier.

A POMDP formulation of preference elicitation problems.

In AAAI/IAAI, 2002.

Nicolas Beldiceanu and Helmut Simonis.

Modelseeker: Extracting global constraint models from positive examples.

In *Data Mining and Constraint Programming*, pages 77–95. Springer, 2016.

🔋 Paolo Dragone, Stefano Teso, and Andrea Passerini.

Constructive preference elicitation.

Frontiers in Robotics and AI, 4:71, 2018.

Lee-Ad Gottlieb, Eran Kaufman, Aryeh Kontorovich, and Gabriel Nivasch.

Learning convex polytopes with margin.

In Advances in Neural Information Processing Systems, pages 5706–5716, 2018.

🔋 Steve Hanneke.

Theory of disagreement-based active learning. Foundations and Trends® in Machine Learning, 2014.

Clemens Heuberger.

Inverse combinatorial optimization: A survey on problems, methods, and results.

Journal of combinatorial optimization, 2004.

- Holger H Hoos and Thomas Stützle.

Stochastic local search: Foundations and applications. Elsevier, 2004.

Samuel Kolb, Sergey Paramonov, Tias Guns, and Luc De Raedt.

Learning constraints in spreadsheets and tabular data. *Machine Learning*, 106(9-10):1441–1468, 2017.

Mohit Kumar, Stefano Teso, and Luc De Raedt. Acquiring integer programs from data. 2019.

Tom M Mitchell.

Generalization as search.

In *Readings in artificial intelligence*, pages 517–542. Elsevier, 1981.

Tomasz P Pawlak and Krzysztof Krawiec.

Automatic synthesis of constraints from examples using mixed integer linear programming.

European Journal of Operational Research, 261(3):1141–1157, 2017.

盲 Gabriella Pigozzi, Alexis Tsoukias, and Paolo Viappiani.

Preferences in artificial intelligence.

Annals of Mathematics and Artificial Intelligence, 2016.

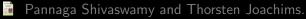
- 📔 Francesca Rossi and Allesandro Sperduti.
 - Acquiring both constraint and solution preferences in interactive constraint systems.

Constraints, 9(4):311-332, 2004.

Burr Settles.

Active learning.

Synthesis Lectures on Artificial Intelligence and Machine Learning, 2012.



Coactive learning.

JAIR, 2015.

🧯 George J Stigler.

The cost of subsistence.

Journal of farm economics, 27(2):303-314, 1945.

- Stefano Teso, Paolo Dragone, and Andrea Passerini.
 Coactive critiquing: Elicitation of preferences and features.
 - In AAAI, pages 2639–2645, 2017.

📔 Vladimir Vapnik.

The nature of statistical learning theory.

Springer science & business media, 2013.

🔋 Corné van Dooren.

A review of the use of linear programming to optimize diets, nutritiously, economically and environmentally. *Frontiers in nutrition*, 5:48, 2018.