
Constraint Learning

Stefano Teso (with some slides by Luc De Raedt and Andrea Passerini)

KU Leuven

@ Reasoning Web Summer School ’19, Bolzano

Why constraints?

Constraints are ubiquitous in AI and OR

Perhaps the two most common formalisms are:

• constraint satisfaction (CSP)

• linear programming (LP)

. . . and all their extensions

Especially common in declarative approaches to problem solving:

define specification of the problem, let solver do the heavy lifting

1

Example: Map Coloring

• Vars: WA, NT, Q, NSW, V, SA, T

• Domains: {red, green, blue}
• Constraints: adjacent regions must

have different colors, e.g., WA 6= NT

(Credit: Marriot & Stuckey)

2

Example: Map Coloring

A solution is a complete and consistent assignment, e.g., WA =

red, NT = green, Q = red, NSW = green, V = red, SA = blue, T

= green

Notice that it may not be unique! 3

Example: Sudoku

no repeated numbers in any row, column, or 3× 3 square

4

Example: Sudoku

array[1..N,1..N] of var PuzzleRange: puzzle;

% All different in rows

constraint forall (i in PuzzleRange) (

alldifferent([puzzle[i,j] | j in PuzzleRange]));

% All different in columns.

constraint forall (j in PuzzleRange) (

alldifferent([puzzle[i,j] | i in PuzzleRange]));

% All different in sub-squares:

constraint forall (a, o in SubSquareRange)(

alldifferent([puzzle[(a-1) * S + a1, (o-1) * S + o1] |

a1, o1 in SubSquareRange]));

solve satisfy;

Using MiniZinc: https://www.minizinc.org/

5

Example: Stigler’s Diet problem

xi = amount of food i in dietci = cost of food i ($5 per burger)

aij = amount of nutrient j in food i (20g protein / burger)

min
x

∑
i∈F

cixi

s.t.
∑
i∈F

aijxi ≥ minnutrj ∀j ∈ N

∑
i∈F

aijxi ≤ maxnutrj ∀j ∈ N

minservei ≤ xi ≤ maxservei ∀i ∈ F

given nutrient information and cost per serving, select the number of servings of each

food so as to (1) minimize the total cost, while (2) meeting nutritional requirements,

i.e. min / max level of nutritional component [Sti45] (actively studied [vD18])

6

Example: Stigler’s Diet problem

x , c ∈ R|F|,b ∈ R|N |,A ∈ R|F|×|N |

min
x

f (x) =
∑
i∈F

cixi

s.t. Ax ≤ b

A linear program in standard form: the constraints Ax ≤ b implicitly define a (possibly

unbounded) feasible polytope, while c defines a linear objective function f over it

The polytope can be viewed as the intersection of |N | hyperplanes

Sol(A, b) = {aj · x ≤ bj : j = 1, . . . , |N |}

7

Why constraint learning?

Constraints are ubiquitous in AI and OR: define problem

specification, feed it to a solver

. . . but formalizing the problem is hard!!!

• Most users are not modelling experts

• Often requires interaction between domain and modelling ex-

perts (going back & forth, plenty of debugging)

• Experts do not work for free

This hinders adoption of smart and efficient solution techniques,

makes decision making harder than it needs to be

8

Why constraint learning?

Constraints are ubiquitous in AI and OR: define problem

specification, feed it to a solver

. . . but formalizing the problem is hard!!!

• Most users are not modelling experts

• Often requires interaction between domain and modelling ex-

perts (going back & forth, plenty of debugging)

• Experts do not work for free

This hinders adoption of smart and efficient solution techniques,

makes decision making harder than it needs to be

8

Constraint learning

If past working and non-working solutions are available, acquire a

model from them!
array[1..N,1..N] of var PuzzleRange: puzzle;

% All different in rows

constraint forall (i in PuzzleRange) (

alldifferent([puzzle[i,j] | j in PuzzleRange]));

% All different in columns.

constraint forall (j in PuzzleRange) (

alldifferent([puzzle[i,j] | i in PuzzleRange]));

% All different in sub-squares:

constraint forall (a, o in SubSquareRange)(

alldifferent([puzzle[(a-1) * S + a1, (o-1) * S + o1] |

a1, o1 in SubSquareRange]));

solve satisfy;

Note: CL is an form of machine learning, link discussed later on

9

Learning Bundesliga scheduling rules [BS16]

learn a constraint satisfaction model for Bundesliga team

scheduling from the data of a single season

10

Learning spreadsheet formulas with TaCLe [KPGDR17]

11

Learning Concrete Mixing from Positive-only data [PK17]

12

Learning to Synthesize [DTP18]

A user wishes to buy a custom PC. The PC is assembled from individual

components: CPU, HDD, RAM, etc. Valid PC configurations must satisfy

constraints, e.g. CPUs only work with compatible motherboards [TDP17]

Hard: “Intel CPUs are incompatible with AMD motherboards”

Soft: “The user prefers one CPU over another”

13

Learning to Synthesize [DTP18]

Interior design Building design

Urban planning

14

Dimensions of Constraint Learning

• Types of constraints:

• hard constraints define the set of valid assignments; used in

SAT, LP, CP, answer set programming, . . .

• soft constraints define preferences among valid assignments;

used in LP, all of operations research

• Learning techniques:

• search-based: smartly enumerate the candidate theories and

pick one that best matches the data

• solver-based: encode the learning problem as a satisfaction or

optimization problem and feed it to a solver

• Are the examples available from the get-go?

• Yes: use passive / offline / batch learning

• No: use interactive learning

15

Dimensions of Constraint Learning

• Types of constraints:

• hard constraints define the set of valid assignments; used in

SAT, LP, CP, answer set programming, . . .

• soft constraints define preferences among valid assignments;

used in LP, all of operations research

• Learning techniques:

• search-based: smartly enumerate the candidate theories and

pick one that best matches the data

• solver-based: encode the learning problem as a satisfaction or

optimization problem and feed it to a solver

• Are the examples available from the get-go?

• Yes: use passive / offline / batch learning

• No: use interactive learning

15

Dimensions of Constraint Learning

• Types of constraints:

• hard constraints define the set of valid assignments; used in

SAT, LP, CP, answer set programming, . . .

• soft constraints define preferences among valid assignments;

used in LP, all of operations research

• Learning techniques:

• search-based: smartly enumerate the candidate theories and

pick one that best matches the data

• solver-based: encode the learning problem as a satisfaction or

optimization problem and feed it to a solver

• Are the examples available from the get-go?

• Yes: use passive / offline / batch learning

• No: use interactive learning

15

Overview

Gallia est omnis divisa in partes tres:

• Learning hard constraints

• That is, learning the requirements themselves (e.g. the rules

of sudoku or the nutritional requirements of diets)

• Learning soft constraints

• That is, learning preferences among feasible alternatives (e.g.

cheaper diets that satisfy all requirements should be preferred)

• Learning hard & soft constraints interactively

• Useful when examples are not readily available or usage of

supervision is expensive and should be minimized

16

Overview

Gallia est omnis divisa in partes tres:

• Learning hard constraints

• That is, learning the requirements themselves (e.g. the rules

of sudoku or the nutritional requirements of diets)

• Learning soft constraints

• That is, learning preferences among feasible alternatives (e.g.

cheaper diets that satisfy all requirements should be preferred)

• Learning hard & soft constraints interactively

• Useful when examples are not readily available or usage of

supervision is expensive and should be minimized

16

Overview

Gallia est omnis divisa in partes tres:

• Learning hard constraints

• That is, learning the requirements themselves (e.g. the rules

of sudoku or the nutritional requirements of diets)

• Learning soft constraints

• That is, learning preferences among feasible alternatives (e.g.

cheaper diets that satisfy all requirements should be preferred)

• Learning hard & soft constraints interactively

• Useful when examples are not readily available or usage of

supervision is expensive and should be minimized

16

Learning Hard Constraints

Overview

• The simplest case: Boolean formulas

• Learning conjunctions (monomials)

• Learning k-CNF

• Search techniques

• General-to-specific, Specific-to-general, Version spaces

• Syntax-guided synthesis

• Applications / implementations

17

The simplest case: Boolean formulas

X = {0, 1}n, X = (X1, . . . ,Xn)︸ ︷︷ ︸
variables

, x = (x1, . . . , xn)︸ ︷︷ ︸
assignment

domain

Y = {0, 1} # labels

H = {candidate formulas φ on X} # hypotheses

Examples:

• conjunctions / disjunctions of up to k literals

H = {Li1 ∨ . . . ∨ Lik : all L’s are literals}

• conjunctive / disjunctive normal form (k-CNF, k-term DNF)

H =

{∧
c

(Li1 ∨ . . . ∨ Lik) : all L’s are literals

}
for instance (Saturday ∨ Sunday) ∧ Sunny ∧ ¬Bored ∧ ¬Sick 18

The simplest case: Boolean formulas

Let φ∗ ∈ H be a hidden Boolean concept and

D = {(xk , yk)}k=1,...,s ⊆ X × Y # dataset

where yk = 1{x |= φ∗}

`(φ,D) = |{k : 1{xk |= φ} 6= yk}| # 0–1 loss

Learning amounts to finding φ ∈ H with minimal (zero) loss

find φ ∈ H
s.t. `(φ,D) = 0

This is an search problem

19

Assumptions

Assumption 1: there is a ground-truth hypothesis φ∗ and it

belongs to H (read: H is “expressive enough”)

Assumption 2: example labels match φ∗, i.e., yk = φ∗(xk) for all

k = 1, . . . , s (read: there is no annotation noise)

This is the realizable setting: a candidate φ with zero loss exists

and can be found by minimizing the loss [Mit81]

20

A bit of theory

Learning amounts to finding φ ∈ H with minimal (zero) loss

find φ ∈ H
s.t. `(φ,D) = 0

This also Empirical Risk Minimization (ERM) [Vap13].

This is good!

• If H is “not too expressive” (e.g. finite or bounded VC di-

mension), ERM is PAC learnable

• This means that if enough examples s are given, the hypothe-

sis found by ERM behaves like the true one:

Pr((x |= φ∗)⇔ (x |= φERM)) = 1

• . . . but it doesn’t say anything about φERM = φ∗

21

Learning conjunctions (monomials)

Start from φ = x1, then check each literal in turn. Example:

• Current hypothesis

φ = ¬X1 ∧ X2 ∧ ¬X3 ∧ X4 ∧ ¬X5

• Is ¬X1 necessary? Generate

x
′ = {X1,X2,¬X3,X4,¬X5}

If x ′ is an example, check that y = 1:

• if positive, ¬X1 is not necessary, delete it from φ

• if negative, ¬X1 is necessary, keep it

Only n + 1 questions needed to recover φ∗ (Find-S)

22

Learning conjunctions (monomials)

Consider a hidden concept φ∗ = X2 ∧ X4

Example X1 X2 X3 X4 X5 y

x1 0 1 1 1 1 1 φ = ¬X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5

x2 1 1 1 1 1 1 φ = X2 ∧ X3 ∧ X4 ∧ X5

x3 0 1 1 0 0 1 φ = X2 ∧ X3 ∧ X4 ∧ X5

x4 1 0 0 1 0 1 φ = X2 ∧ X3 ∧ X4

The “generalization” of all positive examples is:

φ = X2 ∧ X3 ∧ X4

Intuition about PAC: if x ∼ Pr(X) is “diffuse” enough and if

there is no noise, eventually we will some x ′ = (·, ·, 0, ·, ·) with

y ′ = 1, which allows us to find φ′ = X2 ∧ X4 = φ∗.

23

Learning conjunctions (monomials)

Consider a hidden concept φ∗ = X2 ∧ X4

Example X1 X2 X3 X4 X5 y

x1 0 1 1 1 1 1 φ = ¬X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5

x2 1 1 1 1 1 1 φ = X2 ∧ X3 ∧ X4 ∧ X5

x3 0 1 1 0 0 1 φ = X2 ∧ X3 ∧ X4 ∧ X5

x4 1 0 0 1 0 1 φ = X2 ∧ X3 ∧ X4

The “generalization” of all positive examples is:

φ = X2 ∧ X3 ∧ X4

Intuition about PAC: if x ∼ Pr(X) is “diffuse” enough and if

there is no noise, eventually we will some x ′ = (·, ·, 0, ·, ·) with

y ′ = 1, which allows us to find φ′ = X2 ∧ X4 = φ∗.

23

Learning conjunctions (monomials)

Consider a hidden concept φ∗ = X2 ∧ X4

Example X1 X2 X3 X4 X5 y

x1 0 1 1 1 1 1 φ = ¬X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5

x2 1 1 1 1 1 1 φ = X2 ∧ X3 ∧ X4 ∧ X5

x3 0 1 1 0 0 1 φ = X2 ∧ X3 ∧ X4 ∧ X5

x4 1 0 0 1 0 1 φ = X2 ∧ X3 ∧ X4

The “generalization” of all positive examples is:

φ = X2 ∧ X3 ∧ X4

Intuition about PAC: if x ∼ Pr(X) is “diffuse” enough and if

there is no noise, eventually we will some x ′ = (·, ·, 0, ·, ·) with

y ′ = 1, which allows us to find φ′ = X2 ∧ X4 = φ∗.

23

Learning conjunctions (monomials)

Consider a hidden concept φ∗ = X2 ∧ X4

Example X1 X2 X3 X4 X5 y

x1 0 1 1 1 1 1 φ = ¬X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5

x2 1 1 1 1 1 1 φ = X2 ∧ X3 ∧ X4 ∧ X5

x3 0 1 1 0 0 1 φ = X2 ∧ X3 ∧ X4 ∧ X5

x4 1 0 0 1 0 1 φ = X2 ∧ X3 ∧ X4

The “generalization” of all positive examples is:

φ = X2 ∧ X3 ∧ X4

Intuition about PAC: if x ∼ Pr(X) is “diffuse” enough and if

there is no noise, eventually we will some x ′ = (·, ·, 0, ·, ·) with

y ′ = 1, which allows us to find φ′ = X2 ∧ X4 = φ∗.

23

Learning conjunctions (monomials)

Pros:

• Discovers a hypothesis φ ∈ VC (D)

• Only needs positive examples

Cons:

• Discovers a most specific hypothesis only – unclear why we

should focus on that (read: it may be too cautious)

24

Learning CSPs

Constraint satisfaction problems (CSPs) are like concepts but:

• Variables can be non-Boolean, usually X ⊆ Zn (although

continuous variables have been considered for LP)

• Constraints can be non-Boolean, e.g.

X1 ≥ X2, X1 6= X2, alldiff({Xi : i ∈ I})

(We used alldiff in sudoku)

Propositionalization can encode any CSP to Bool vars only:

(X1,X2,X3) X1 < X2 X1 > X2 X1 = X2 X1 < X3 . . . y

(1, 2, 3) 1 0 0 1 . . . 1

(2, 3, 1) 1 0 0 0 . . . 0

25

Learning CSPs

Constraint satisfaction problems (CSPs) are like concepts but:

• Variables can be non-Boolean, usually X ⊆ Zn (although

continuous variables have been considered for LP)

• Constraints can be non-Boolean, e.g.

X1 ≥ X2, X1 6= X2, alldiff({Xi : i ∈ I})

(We used alldiff in sudoku)

This makes identifiability harder: X1 = X2 and

IOW: syntactically different theories are semantically equivalent

26

Learning as search

Learning amounts to finding φ ∈ H with minimal (zero) loss

find φ ∈ H
s.t. `(φ,D) = 0

This is a large, hard problem:

1. large because H is exponential in the number of variables,

2. hard because combinatorial: all variables are discrete
27

Generate-and-test

Generate-and-test is the simplest possible algorithm:

enumerate all φ ∈ H and keep the ones with zero loss

• Obviously correct :-)

• Obviously inefficient :-)

Not viable if H is very large, e.g. n ≥ 20, but one can avoid to

enumerate trivially invalid candidates – used it in practice

28

Generate-and-test

Generate-and-test is the simplest possible algorithm:

enumerate all φ ∈ H and keep the ones with zero loss

• Obviously correct :-)

• Obviously inefficient :-)

Not viable if H is very large, e.g. n ≥ 20, but one can avoid to

enumerate trivially invalid candidates – used it in practice

28

Generate-and-test

Generate-and-test is the simplest possible algorithm:

enumerate all φ ∈ H and keep the ones with zero loss

• Obviously correct :-)

• Obviously inefficient :-)

Not viable if H is very large, e.g. n ≥ 20, but one can avoid to

enumerate trivially invalid candidates – used it in practice

28

Also make sure not to enumerate twice

• Use lexicographic ordering: impose S � M � C � B

This avoids enumerating the same theory twice

These rules can become pretty tricky: [KTDR19] learns non-linear

mathematical programs from tensor data → plenty of indices →
four-level hierarchical lexicographic ordering! 29

Learning spreadsheet formulas with TaCLe [KPGDR17]

• vector = row or column

• block = type-consistent contin-

guous vectors

• only constraints compatible with

observed blocks are enumerated

– using MiniZinc!
30

ModelSeeker

31

Classical search techniques

• General-to-specific (or top-down): start from most general

hypothesis φ ∈ H, e.g., φ = >, and gradually specialize it to

exclude negative examples

i.e. add constraints as we go

• Specific-to-general (or bottom-up): start from most specific

hypothesis φ and gradually generalize it to cover positive

examples.

i.e. remove constraints as we go

32

Using generalization �g

Lattice of concepts over {S ,M,C ,B} w.r.t. generalization relation

where the generalization relation φ �g φ
′ iff φ covers (labels as

positive) all instances covered by φ′ and possibly some more
33

Using generalization �g

Lattice of concepts over {S ,M,C ,B} w.r.t. generalization relation

The version space is the set of candidates in H consistent with all

examples: VS(D) = {h ∈ H : `(h,D) = 0}
34

Using generalization �g

Lattice of concepts over {S ,M,C ,B} w.r.t. generalization relation

Consider examples:

{1, 1, 0, 0}, negative

{1, 1, 1, 0}, positive

The version space is the set of candidates in H consistent with all

examples: VS(D) = {h ∈ H : `(h,D) = 0}

35

Bi-directional search

Lattice of concepts over {S ,M,C ,B} w.r.t. generalization relation

Bi-directional search iteratively shrinks the version space by

observing more and more examples (more later)
36

Syntax-guided Synthesis

Learning amounts to finding φ ∈ H with minimal (zero) loss

find φ ∈ H
s.t. `(φ,D) = 0

Just encode this as propositional satisfiability (SAT)!

• SAT is NP-complete in general,

• but SAT (and related) solvers can be very efficient in practice

• also avoid encoding all examples / constraints from the get

go [KPGDR17]

The advantage is that learning is certifiably exact!

37

Learning LPs

Recall linear programs in canonical form:

maxx c · x (1)

s.t. aj · x ≤ bj j = 1, . . . ,m (2)

and learn A and b from positive–negative examples labelled by a

hidden, ground-truth polytope A∗,b∗.

38

Notation

Name Constant

i = 1, . . . , n Index over variables

j = 1, . . . ,m Index over constraints

k = 1, . . . , s Index over examples

(xk , yk) The kth example: instance x
k and label yk

amax ∈ R Maximum value for aj,i
bmax ∈ R Maximum value for bj

Decision variable

aj,i ∈ R Learned coefficients

bj ∈ R Learned biases

Auxiliary variable

vk,j ∈ {0, 1} Whether example k violates constraint j

zaj,i ∈ {0, 1} Whether coefficient aj,i is non-zero

zbj ∈ {0, 1} Whether coefficient bj is non-zero
39

Learning LPs with IncaLP

minA,b

∑
i ,j z

a
j ,i +

∑
j z

b
j (3)

s.t. aj · xk ≤ bj ∀j , k : yk = 1 (4)∑
j vk,j ≥ 1 ∀k : yk = 0 (5)

aj · xk ≥ Mvk,j −M + bj + ε ∀j , k : yk = 0 (6)∑
i z

a
j ,i ≥ zbj ∀j (7)

− amaxz
a
j ,i ≤ aj ,i ≤ amaxz

a
j ,i ∀i , j (8)

− bmaxz
b
j ≤ bj ≤ bmaxz

b
j ∀j (9)

40

IncaLP

The IncaLP algorithm: m is the number of constraints, D are the

examples, and θ is the decision tree.

1: procedure LearnIncremental(m,D, θ)

2: i ← 1

3: Di ← Choose(D, θ, 20)

4: Vi ← all misclassified examples in D \ Di

5: while Vi is not empty do

6: Ai ,bi ← Solve(Encode(m,Di)) . Eq. 3–9

7: if could not find Ai , bi consistent with Di then

8: return infeasible

9: Vi ← all misclassified examples in D \ Di

10: Di+1 ← Di ∪ Choose(Vi , θ, 1)

11: i ← i + 1

12: return Ai ,bi
41

IncaLP

Choice of which examples to add is driven by a decision tree

heuristic: not strictly necessary, but it does speed things up 42

IncaLP

The non-parametric IncaLP algorithm: D are the examples.

1: procedure LearnNoParams(D)

2: m← 1

3: θ ← LearnDT(D)

4: while true do

5: Ai ,bi ← LearnIncremental(m,D, θ)

6: if could not find Ai , bi then

7: m← m + 1

8: else

9: return Ai ,bi

Guaranteed to terminate in the realizable setting

43

Search is search!

Learning amounts to finding φ ∈ H with minimal (zero) loss

find φ ∈ H
s.t. `(φ,D) = 0

In principle, any search algorithm can be used:

• genetic algorithms (see e.g. [PK17]), tabu search, simulated

annealing, ant colony optimization. . .

• any form of stochastic local search suitable for combinato-

rial optimization, and there are plenty [HS04]

Many of these procedures can be tuned for anytime solving – i.e.

if you stop them at any time, they give you some solution

(However, they may never find a perfect solution)

44

Links to machine learning

• Constraint learning from positive–negative examples is to

some extent equivalent to binary classification: learn a hy-

pothesis h : X → {0, 1} with low loss

• Indeed, concept learning is classification

• Learning constraints of linear programs is equivalent to learn-

ing a convex polytope [GKKN18]

• This means that in principle standard machine learning tools

can be used here too (yeah, also neural nets)

• However the learned model is not used only for prediction!

e.g. learned CSP can be analyzed, debugged, explained, adapted

by some expert, etc.

45

Links to machine learning

• Most theory in machine learning focuses on guaranteeing

generalization, i.e., finding conditions under which the learned

classifier generalizes to instances not in the training set

• In the realizable case, this

• No though is given to identifiability: the learned model must

behave like the gold standard, but it may be different!

(Same issue in Bayesian networks etc.)

The theory says nothing about this.

46

Learning Soft Constraints

Why soft constraints?

• Deal with conflicting requirements (e.g. multi-objective opti-

mization)

• Combine knowledge and uncertainty (probabilistic relational

models, fuzzy logic)

• Combine statistical and relational approaches to learning (sta-

tistical relational learning)

47

E.g: Markov Logic networks

Definition

• A Markov Logic Network (MLN) L is a set of pairs (Fi ,wi)
where:

• Fi is a formula in first-order logic

• wi is a real number (the weight of the formula)

• Applied to a finite set of constants C = {c1, . . . , c|C |} it de-

fines a Markov network ML,C :

• ML,C has one binary node for each possible grounding of each

atom in L. The value of the node is 1 if the ground atom is

true, 0 otherwise.

• ML,C has one feature for each possible grounding of each for-

mula Fi in L. The value of the feature is 1 if the ground for-

mula is true, 0 otherwise. The weight of the feature is the

weight wi of the corresponding formula

48

Markov Logic networks

Intuition

• A MLN is a template for Markov Networks, based on logical

descriptions

• Single atoms in the template will generate nodes in the net-

work

• Formulas in the template will be generate cliques in the net-

work

• There is an edge between two nodes iff the corresponding

ground atoms appear together in at least one grounding of a

formula in L

49

Markov Logic networks: example

Ground network

• A MLN with two (weighted) formulas:

w1 ∀x (Bird(x)⇒ Flies(x))

w2 ∀x , y (Predates(x,y) ∧ Bird(y)⇒ Bird(x))

• applied to a set of two constants {Sparrow, Eagle}
• generates the Markov Network shown in figure 50

Markov Logic networks

Joint probability

• A ground MLN specifies a joint probability distribution over

possible worlds (i.e. truth value assignments to all ground

atoms)

• The probability of a possible world x is:

p(x) =
1

Z
exp

(
F∑
i=1

wini (x)

)
where:

• the sum ranges over formulas in the MLN (i.e. clique tem-

plates in the Markov Network)

• ni (x) is the number of true groundings of formula Fi in x

• The partition function Z sums over all possible worlds (i.e. all

possible combination of truth assignments to ground atoms)
51

Markov Logic networks

Inference

• Compute value of x with maximal probability

x∗ = argmax
x

1

Z
exp

(
F∑
i=1

wini (x)

)
= argmax

x

F∑
i=1

wini (x)

⇒ boils down to weighted MAX-SAT.

• Compute value of x with max. probability given evidence e

x∗ = argmaxxp(x |e)

where evidence fixes the value of some of the variables in x

52

Markov Logic networks

Learning

• Learn weights of (given) formulas

• parameter learning

• Learn both formulas and weights

• structure learning

53

Weighted Constraint Satisfaction Problems (wCSP)

Definition

Given

• A set of pairs {(ci ,wi)}ni=1 where:

• ci is a (soft) constraint

• wi ∈ IR is a weight

• An indicator function 1{x |= c} evaluating to one if c is sat-

isfied by x , and zero otherwise

Find

x∗ = argmax
x∈X

f (x) = argmax
x∈X

n∑
i=1

wi · 1{x |= ci}

Note
Hard constraints can be incorporated in X

54

Learning weights for wCSP

Preference learning

Given

• A set of (soft) constraints {(ci)}ni=1

• A set of examples pairs D = {(xj , x ′j)}mj=1 such that for all j it

should hold that

f (xj) > f (x ′j)

• An objective function J(w ,D)

Find

• A set of weights ŵ minimizing the objective:

ŵ = argmin
w

J(w ,D)

55

Preference learning for wCSP

E.g. SVM ranking

min
w

||w ||2 + λ
∑m

j=1 ξj

s.t f (xj)− f (x ′j) ≥ 1− ξj ∀j ∈ [1, n]

where:

• ξj is a penalty for not ranking xj higher than x ′j with a large

enough margin

• ||w ||2 is a regularization term (margin is 2/||w || → large mar-

gin separation)

• λ ∈ R+ is a parameter trading off margin and correct rank-

ings

56

Learning weights for wCSP

Structured-output learning

Given

• A set of (soft) constraints {(ci)}ni=1

• A set of input-output pairs D = {(xj , yj)}mj=1 such that for all

j it should hold that

yj = argmax
y∈Y

f (xj , yj)

• An objective function J(w ,D)

Find

• A set of weights ŵ minimizing the objective:

ŵ = argmin
w

J(w ,D)
57

Structured-output learning for wCSP

E.g. Structured-output SVM

min
w

||w ||2 + λ
∑m

j=1 ξj

s.t f (xj , yj)− f (xj , y
′
j) ≥ 1− ξj ∀j ∈ [1, n] ∀y ′j 6= yj

where:

• ξj is a penalty for not ranking yj higher than any alternative

output y ′j with a large enough margin

Problem
The number of constraints is equal to m × (|Y| − 1) and is

typically exponential in the number of output variables

58

Structured-output SVM for wCSP

Cutting plane algorithm

1. Initialize weights w = 0 and set of constraints Sj = ∅ for

each example j

2. While constraint added, for each example (xj , yj)

2.1 Check penalty using current Sj

ξj = max
y ′
j ∈Sj

1 + f (xj , y
′
j)− f (xj , yj) [weighted CSP problem!!]

2.2 Check penalty in full space Y

ξnewj = max
y ′
j 6=yj

1+f (xj , y
′
j)−f (xj , yj) [weighted CSP problem!!]

2.3 If ξnewj − ξj > ε

2.3.1 Add constraint and update Sj

2.3.2 Retrain

59

Weighted Constraint Optimization Problems (wCOP)

(possible) Definition

Given

• A set of triplets {(ci ,wi , φi)}ni=1 where:

• ci is a (soft) constraint

• wi ∈ IR is a weight

• φi is a cost function mapping ci and x to a real value (e.g. a

measure of how far x is from satisfying ci)

Find

x∗ = argmin
x∈X

f (x) = argmin
x∈X

n∑
i=1

wi · φ(x , ci)

Note
It is more natural to model the problem as cost minimization

60

Learning weights for wCOP

Preference learning

Given

• A set of (soft) constraints and cost functions {(ci , φi)}ni=1

• A set of examples pairs D = {(xj , x ′j)}mj=1 such that for all j it

should hold that

f (xj) > f (x ′j)

• An objective function J(w ,D)

Find

• A set of weights ŵ minimizing the objective:

ŵ = argmin
w

J(w ,D)

61

Preference learning for wCOP

E.g. SVM ranking

min
w

||w ||2 + λ
∑m

j=1 ξj

s.t f (xj)− f (x ′j) ≥ 1− ξj ∀j ∈ [1, n]

where:

• ξj is a penalty for not ranking xj higher than x ′j with a large

enough margin

• ||w ||2 is a regularization term (margin is 2/||w || → large mar-

gin separation)

• λ ∈ R+ is a parameter trading off margin and correct rank-

ings

62

Learning weights for wCOP

Structured-output learning

Given

• A set of (soft) constraints and cost functions {(ci , φi)}ni=1

• A set of input-output pairs D = {(xj , yj)}mj=1 such that for all

j it should hold that

yj = argmin
y∈Y

f (xj , yj)

• An objective function J(w ,D)

Find

• A set of weights ŵ minimizing the objective:

ŵ = argmin
w

J(w ,D)
63

Structured-output learning for wCOP

E.g. Structured-output SVM

min
w

||w ||2 + λ
∑m

j=1 ξj

s.t f (xj , y
′
j)− f (xj , yj) ≥ 1− ξj ∀j ∈ [1, n] ∀y ′j 6= yj

where:

• ξj is a penalty for not giving yj a lower cost than to any alter-

native output y ′j with a large enough margin

Problem
The number of constraints is equal to m × (|Y| − 1) and is

typically exponential in the number of output variables

64

Structured-output SVM for wCOP

Cutting plane algorithm

1. Initialize weights w = 0 and set of constraints Sj = ∅ for

each example j

2. While constraint added, for each example (xj , yj)

2.1 Check penalty using current Sj

ξj = max
y ′
j ∈Sj

1 + f (xj , yj)− f (xj , y
′
j) [weighted COP problem!!]

2.2 Check penalty in full space Y

ξnewj = max
y ′
j 6=yj

1+f (xj , yj)−f (xj , y
′
j) [weighted COP problem!!]

2.3 If ξnewj − ξj > ε

2.3.1 Add constraint and update Sj

2.3.2 Retrain

65

Selecting constraints and learning weights for wCOP

Constraint Selection and Preference learning

Given

• A set of candidate (soft) constraints and cost functions C =

{(ci , φi)}ni=1

• A set of examples pairs D = {(xj , x ′j)}mj=1 such that for all j it

should hold that

f (xj) > f (x ′j)

• An objective function J(w ,D)

Find

• A subset of the constraints Ĉ ⊆ C and a set of weights ŵ s.t.:

(Ĉ, ŵ) = argmin
C′⊆C

argmin
w∈IR|C′|

J(w ,D)
66

Regularization for Constraint Selection

2-norm regularization

J(w) = ||w ||2 + λE (w)

• Penalizes weights by (squared) Euclidean norm

• Weights with less influence on error get smaller values

• No explicit bias towards exactly zero weights

67

Regularization for Constraint Selection

1-norm regularization

J(w) = |w |+ λE (w)

• Penalizes weights by sum of absolute values

• Encourages less relevant weights to be exactly zero (sparsity

inducing norm)

68

Constraint Selection and Preference learning for wCOP

E.g. SVM ranking with 1-norm regularization

min
w

|w |+ λ
∑m

j=1 ξj

s.t f (xj)− f (x ′j) ≥ 1− ξj ∀j ∈ [1, n]

where:

• ξj is a penalty for not ranking xj higher than x ′j

• |w | is a sparsity inducing regularization term

• λ ∈ R+ trades off sparsity and correct rankings

Note
Structured-output learning can also be adapted by replacing

two-norm with one-norm

69

Learning constraints and weights for wCSP

Constraint Learning and Preference learning

Given

• A language L defining valid constraints

• A set of examples pairs D = {(xj , x ′j)}mj=1 such that for all j it

should hold that

f (xj) > f (x ′j)

• An objective function J(w ,D)

Find

• A set of constraints valid according to the language L and a

set of weights ŵ s.t.:

(Ĉ, ŵ) = argmin
C′∈L

argmin
w∈IR|C′|

J(w ,D)
70

Pyconstruct

Pyconstruct is a Python library for soft constraint learning (both wCSPs

and wCOPs) using structured-output prediction. The wCOP is encoded

in MiniZinc.

URL: github.com/unitn-sml/pyconstruct

71

Constraint Learning and Preference learning for wCSP (hints)

Two step approach

1. Run hard constraint learning algorithm to get set of candidate

constraints C
2. Run constraint selection and preference learning on C

Combined approach

1. Start with empty set of constraints C = ∅

2. While no improvement

2.1 Use language bias from hard constraint learning to generate

candidate extensions C′ of constraints in C
2.2 Replace C with C′

2.3 Run constraint selection and preference learning on C
2.4 Discard zero weight constraints from C

72

Interactive Learning

What is interactive learning good for?

1. To extract knowledge from an expert

2. To elicit the preferences of a customer by asking simple ques-

tions about alternative products

3. To ask the labels of the most informative instances only, esp.

if supervision is expensive

4. To speed learning up by asking smart queries

Note: related to active learning and preference elicitation, but not

quite the same

73

From offline to interactive

There is a hidden, target theory C ∗ over domain X .

Offline:

• Given instances xi labelled by yi = 1{xi |= C ∗}
• Find a theory C s.t. yi = 1⇔ (xi |= C) for i = 1, . . . , n

⇓
Interactive:

• Given an oracle that answers queries by consulting C ∗

• Find a theory C consistent with all answers

(The soft constraints case changes analogously.)

74

From offline to interactive

There is a hidden, target theory C ∗ over domain X .

Offline:

• Given instances xi labelled by yi = 1{xi |= C ∗}
• Find a theory C s.t. yi = 1⇔ (xi |= C) for i = 1, . . . , n

⇓
Interactive:

• Given an oracle that answers queries by consulting C ∗

• Find a theory C consistent with all answers

(The soft constraints case changes analogously.)

74

Assumption 1: there is a ground-truth hypothesis h∗ and it is

contained in H (read: H is “expressive enough”)

Assumption 2: example labels match h∗, i.e., yk = h∗(xk) for all

k = 1, . . . , s (read: there is no annotation noise)

Assumption 3: the oracle is a domain expert

• Does always interpret/understand the queries

• Very dedicated, so always provides correct feedback

(Could also be a robot or a measurement apparatus)

76

An algorithm template

1: procedure learn (max. iterations T)

2: C 1 ← initial theory

3: for t = 1, . . . ,T do

4: Choose a query q (e.g. an instance x ∈ X)

5: Ask q to the oracle

6: Receive feedback (e.g. whether x is a model of C ∗)

7: C t+1 ← update C t according to feedback

8: return CT

Questions:

• what kind of queries should be asked?

• how to pick an informative query?

77

What kind of queries?

For hard constraints

• membership: does x satisfy C ∗?

• partial membership: does x [V] satisfy C ∗?

• equivalence: are C t and C ∗ logically equivalent? If not, pro-

vide a counter-example.

For soft constraints1

• scoring: what is the score f ∗(x) of x?

• ranking: is f ∗(x) ≥ f ∗(x ′)?

• improvement: give me a configuration x ′ s.t. f ∗(x ′) > f ∗(x)

1E.g., for wCSP the real score is f ∗(x) =
∑

i w
∗
i 1{x |= ci}

78

Interactive Learning of Hard Con-

straints

Membership Queries: Monomials [BDH+16]

• Current hypothesis (conjunction)

C t = {¬X1,X2,¬X3,X4,¬X5}

• To check whether ¬X1 is really necessary, generate instance

x = {X1,X2,¬X3,X4,¬X5}

• Ask membership query “x |= C ∗?”

• if positive, ¬X1 is not necessary, delete it from C t

• if negative, ¬X1 is necessary, keep it

Only #vars + 1 questions needed to recover C ∗

79

Membership Queries: ConAcq [BDH+16]

Bi-directional search

version space identified by

• most general candidate Cg

• most specific candidate Cs

C ∗ always within version space

Idea: pick x ∈ Sol(Cg) \ Sol(Cs)

• If x is positive, generalize most specific candidate

• If x is negative, specialize most generic candidate

where Sol(C) = {x : x |= C}
80

Version space and Instances

Note: Sol(C) is inside the circle

81

Query Selection

Select instance x ∈ Sol(Cg) \ Sol(Cs)

82

Positive ⇒ generalize Cs

Generalizing Cs = removing constraints from it

83

Negative ⇒ specialize Cg

Specializing Cg = adding constraints to it

84

Partial Queries: Quacq [BDH+16]

Consider learning the Eight Queens Problem

Membership: does the board x satisfy

all constraints?

Partial membership: does the partial

board x [V] violate at least one con-

straint?

Partial membership is more informative: all completions of the

partial configuration are also negative!

(It is also easier to answer from the oracle’s perspective.)

85

Example (C. Bessiere)

86

Example (C. Bessiere)

87

Example (C. Bessiere)

88

Example (C. Bessiere)

89

Equivalence Queries [Ang88]

Ask whether C t = C ∗. If not, provide a counter-example x s.t.

x |= C ∗ ∧ x 6|= C t

or vice-versa.

More powerful than membership queries2.

But impractical, even domain experts may have trouble answering

them.

2Equivalence queries can be simulated by polynomially many membership

queries [BKLO17].

90

Soft Constraints

A user wishes to buy a custom PC. The PC is assembled

from individual components: CPU, HDD, RAM, etc. Valid

PC configurations must satisfy constraints, e.g. CPUs only

work with compatible motherboards [TDP17]

Hard: “Intel CPUs are incompatible with AMD motherboards”

Soft: “The user prefers one CPU over another”

91

Weighted Constraint Satisfaction Problems (wCSP)

Definition (same as before!)

Given

• A set of pairs {(ci ,wi)}ni=1 where:

• ci is a (soft) constraint

• wi ∈ R is a weight

• An indicator function 1{x |= c} evaluating to one if c is sat-

isfied by x and to zero otherwise

Find

x∗ = argmax
x∈X

f (x) = argmax
x∈X

n∑
i=1

wi · 1{x |= ci}

Note hard constraints can be incorporated in X

92

Interactive learning of soft theories

Assumption: hypothesis space H contains (C ∗,w∗)

• For weight learning, we can reconstruct w∗ perfectly

Depending on application: the oracle is not a domain expert

• May not interpret/understand the queries

• May provide noisy feedback

For instance, a customer on an e-commerce website.

As a consequence, the version space may be empty!

93

The generic weight learning loop

1: procedure LearnWeights (C , max iterations T)

2: w1 ← initial weights

3: for t = 1, . . . ,T do

4: Choose a query q (e.g. an instance x)

5: Ask q to the oracle

6: Receive feedback (e.g. the actual score f ∗(x))

7: w t+1 ← update w t according to feedback

8: return wT

Different instantiations for different types of queries / feedback

94

Scoring Queries (for a wCSP about cakes!)

A pretty ideal setup—can observe f ∗(x) directly!

95

Weight learning of wCSP via regression [RS04]

Same as offline case, except the dataset is built interactively

1: procedure learn (max iterations T , sample set size k)

2: D ← ∅
3: w ← initial weights

4: for t = 1, . . . ,T do

5: Sample x1, . . . , xk ∈ argmaxx∈X f (x ;w)

6: Present {x1, . . . , xk} to the oracle

7: D ← D ∪ {(xj , yj)}kj=1 (yj = f ∗(xj) + noise)

8: w t+1 ← solve regression over D
9: return wT

Regression amounts to solving

w
t+1 ← argmin

w

∑
(x ,y)∈D

(f (x ;w)− y)2

96

A scoring oracle may not be available

even experts may not be able to provide absolute scores reliably

97

Ranking Queries

relative judgements only — no more pesky absolute scores

98

Ranking does not solve everything

What if it is hard to compare alternatives3, e.g. they are too

similar or too diverse? What if there are just too many?

3From https://eagereyes.org/criticism/chernoff-faces

99

Preference learning for wCSP via ranking4

Offline case: SVM ranking

min
w

||w ||2 + λ
∑m

j=1 ξj

s.t f (xj)− f (x ′j) ≥ 1− ξj ∀j ∈ [1, n]

where:

• f (x) =
∑n

i=1 wi · 1{x |= ci}
• ξj is a penalty for not ranking xj higher than x ′j with a large

enough margin

• ||w ||2 is a regularization term (margin is 2/||w || → large

margin separation)

• parameter λ ∈ R+ trades off margin and penalty
4Slide: Andrea Passerini

100

Ranking for weight learning of wCSP

Simple extension of offline ranking SVM

1: procedure learn (max iterations T)

2: C 1,w1 ← initial theory, initial weights

3: for t = 1, . . . ,T do

4: Choose x , x ′ to be high scoring and reasonably diverse

5: Present (x , x ′) to the oracle

6: Add oracle ranking x < x ′ to D
7: w t+1 ← learn ranking from D
8: return wT

To get high score / diverse x ’s solve, e.g.

argmax
x ,x ′

f (x ;w) + f (x ′;w) + α · d(x , x ′)

s.t. d(x , x ′) ≤ dmax 101

k-way inference can be slow

What if it is easy to manipulate the configurations?

It’s possible to avoid “k-way inference” by asking the user to

improve the current best configuration

102

Improvement Queries

boils down to a pairwise preference f ∗(x̄ t) ≥ f ∗(x t)

103

Coactive Learning for weight learning of wCOP [SJ15]

Perceptron-based preference learning from improvement queries

1: procedure learn (max iterations T)

2: C 1,w1 ← initial theory, initial weights

3: for t = 1, . . . ,T do

4: x t ← argmaxx∈X
∑

i wi1i (x)

5: Present x t to the oracle

6: Obtain improved configuration x̄ t

7: w t+1 ← w t + φ(x̄ t)− φ(x t)

8: return CT

Note quality of configurations approaches optimum as O(1/
√
T)

under assumptions on the improvements

104

Coactive learning: iteration T

105

Coactive learning: iteration T

106

Coactive learning: iteration T

107

Coactive learning: iteration T + 1

108

Coactive Critiquing [TDP17]

Recall that constraints ≈ features in wCSP

1i (x) = 1{x |= ci} ∀i = 1, . . . , n

What if we don’t have all of the constraints/features?

Idea

• If oracle improvement can’t be explained by the learner (e.g.

by linear spearability), a constraint is missing

• Ask for the missing constraint, acquire cn+1

Add 1n+1 = 1{x |= cn+1} to the pool of features, proceed as usual

with Coactive Learning

109

Critiquing Queries

add the critique to the constraints, update the feature space

110

Critiquing Queries

A few remarks

• Can be proven to converge under assumptions, even if most

constraints are acquired on-the-fly

• Not really “learning”

• Critiquing queries provide the missing constraints

Once more: powerful oracles make learning easier

111

Still much work to do!

• How to combine learning of hard and soft constraints?

• What are the “best” queries in the soft setting?

• How to properly deal with rationally bounded oracles?

e.g. how to combine technology and human interaction?

• How far can we push and/or guide the oracle?

e.g. how to best exploit and control human abilities?

(and much more)

112

Wrapping up

Take-away

• Interaction is fundamental when specifications and prefer-

ences are hard to specify upfront, can cut labeling cost and

speed up learning

• CSPs can be learned via version space approaches (in the

realizable setting)

• wCSP/wCOP weight learning can be cast as

interactive ranking + smart query selection

• Different query types have different:

• ability to learn from human non-experts

• theoretical efficiency [Ang88, BDH+16]

113

Thank you!

114

Related frameworks

Many topics related to interactive constraint learning

• Pool-based Active Learning

• Preference Elicitation (for interactive recommendation)

• Programming by Feedback [ASSS14]

• Inverse Combinatorial Optimization [Heu04]

• . . .

115

Pool-based Active Learning [Set12, Han14]

Given hidden decision function f ∗ : X → {±1}, instances

x1, . . . , xn ∈ X , and an oracle that labels instances with f ∗

Find a good estimate f of f ∗ with as few queries as possible

Remarks

• Like CP, focuses on quality of learned model loss(f ∗, f)

• . . . but geometrical flavor: SVMs, Gaussian Processes

• Many strategies in common (e.g. version spaces)

Query types: labeling queries (≈ membership), search queries (≈
equivalence), rationales and explanations, . . .

116

Preference Elicitation [Bou02, PTV16]

Given products x1, . . . , xn ∈ X and a user who ranks alternatives

by relative preferrability

Find a good item x ∈ X with the least cognitive effort

If we knew the true user’ scoring function f (x), it would be easy!

But we don’t, so we estimate it iteratively by asking queries

Remarks

• Must model preferences, similar to wCSP/wCOP

• wCSP/wCOP useful for recommending combinatorial items

• Unlike CP, only quality of recommendation x matters

• Learns approximation f of f ∗ only as byproduct

Methods: Bayesian, minimax regret, online learning
117

Dana Angluin.

Queries and concept learning.

Machine learning, 1988.

Riad Akrour, Marc Schoenauer, Michèle Sebag, and Jean-

Christophe Souplet.

Programming by feedback.

In International Conference on Machine Learning, number 32,

pages 1503–1511. JMLR. org, 2014.

Christian Bessiere, Abderrazak Daoudi, Emmanuel Hebrard,

George Katsirelos, Nadjib Lazaar, Younes Mechqrane, Nina

Narodytska, Claude-Guy Quimper, and Toby Walsh.

New approaches to constraint acquisition.

In Data Mining and Constraint Programming. 2016.

117

Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry

O’Sullivan.

Constraint acquisition.

Artificial Intelligence, 244:315–342, 2017.

Craig Boutilier.

A POMDP formulation of preference elicitation prob-

lems.

In AAAI/IAAI, 2002.

Nicolas Beldiceanu and Helmut Simonis.

Modelseeker: Extracting global constraint models from

positive examples.

In Data Mining and Constraint Programming, pages 77–95.

Springer, 2016.

Paolo Dragone, Stefano Teso, and Andrea Passerini.

117

Constructive preference elicitation.

Frontiers in Robotics and AI, 4:71, 2018.

Lee-Ad Gottlieb, Eran Kaufman, Aryeh Kontorovich, and

Gabriel Nivasch.

Learning convex polytopes with margin.

In Advances in Neural Information Processing Systems, pages

5706–5716, 2018.

Steve Hanneke.

Theory of disagreement-based active learning.

Foundations and Trends R© in Machine Learning, 2014.

Clemens Heuberger.

Inverse combinatorial optimization: A survey on prob-

lems, methods, and results.

Journal of combinatorial optimization, 2004.

Holger H Hoos and Thomas Stützle.

117

Stochastic local search: Foundations and applications.

Elsevier, 2004.

Samuel Kolb, Sergey Paramonov, Tias Guns, and Luc

De Raedt.

Learning constraints in spreadsheets and tabular data.

Machine Learning, 106(9-10):1441–1468, 2017.

Mohit Kumar, Stefano Teso, and Luc De Raedt.

Acquiring integer programs from data.

2019.

Tom M Mitchell.

Generalization as search.

In Readings in artificial intelligence, pages 517–542. Elsevier,

1981.

Tomasz P Pawlak and Krzysztof Krawiec.

117

Automatic synthesis of constraints from examples using

mixed integer linear programming.

European Journal of Operational Research, 261(3):1141–1157,

2017.

Gabriella Pigozzi, Alexis Tsoukias, and Paolo Viappiani.

Preferences in artificial intelligence.

Annals of Mathematics and Artificial Intelligence, 2016.

Francesca Rossi and Allesandro Sperduti.

Acquiring both constraint and solution preferences in

interactive constraint systems.

Constraints, 9(4):311–332, 2004.

Burr Settles.

Active learning.

Synthesis Lectures on Artificial Intelligence and Machine

Learning, 2012.

117

Pannaga Shivaswamy and Thorsten Joachims.

Coactive learning.

JAIR, 2015.

George J Stigler.

The cost of subsistence.

Journal of farm economics, 27(2):303–314, 1945.

Stefano Teso, Paolo Dragone, and Andrea Passerini.

Coactive critiquing: Elicitation of preferences and fea-

tures.

In AAAI, pages 2639–2645, 2017.

Vladimir Vapnik.

The nature of statistical learning theory.

Springer science & business media, 2013.

Corné van Dooren.

117

A review of the use of linear programming to optimize

diets, nutritiously, economically and environmentally.

Frontiers in nutrition, 5:48, 2018.

117

	Learning Hard Constraints
	Learning Soft Constraints
	Interactive Learning
	Interactive Learning of Hard Constraints
	Soft Constraints
	Wrapping up

