
Logic-based	Learning	of
Answer	Set	Programs

Mark	Law and	Alessandra	Russo

mark.law09@imperial.ac.uk
a.russo@imperial.ac.uk



Structure

©	Mark	Law

➢ Answer	Set	Programming	(ASP)
➢ Very	brief	overview	of	the	Answer	Set	Programming
➢ Brave	and	cautious	entailment

➢ Initial	approaches	to learning	in	ASP
➢ Brave	and	cautious	induction	in	ASP	
➢ The	algorithm	of	ASPAL
➢ Limitations	of	brave	and	cautious	induction

➢ Learning	from	Answer	Sets	(LAS) and	ILASP

➢ Relationship	to	other	learning	approaches
➢ Context-dependent	examples
➢ Preference	learning	in	ASP
➢ Learning	from	noisy	examples
➢ The	ILASP	Algorithm	for	computing	the	optimal	solutions	of	any	LAS	task



Problem

ASP	
program

Answer	
Sets

Solutions

Answer	Set	Programming



Example	
Solutions

Answer	
Sets

ASP	
Program

Rules	of	
Sudoku

1 #count { value(1, C); value(2, C); value(3, C); 
value(4, C) } 1 :- cell(C).
:- value(V, C1), value(V, C2), same_row(C1, C2).
:- value(V, C1), value(V, C2), same_block(C1, C2).
:- value(V, C1), value(V, C2), same_col(C1, C2).

ASP Representation 
of Sudoku

Answer	Set	Programming



Syntax:	Normal	rules
Let	h, b1, ..., bm, c1, ..., cnbe	atoms.	A	normal	rule is	
of	the	form:

h :- b1, ..., bm, not c1, ..., not cn.

If	the	body	of	the	rule	is	satisfied	then	its	head	must	also	be	
satisfied.

Head																																																	Body



Syntax:	Choice	rules
Let	h1, ..., hk, b1, ..., bm, c1, ..., cnbe	atoms.	A	
choice	rule is	of	the	form:

lb {h1; …; hk} ub :- b1, …, bm, not c1, …, not cn.

If	the	body	of	the	choice	rule	is	satisfied	then	between	lb
and	ub of	{h1, …, hk}must	be	satisfied.

Head																																			Body



Syntax:	Constraints
Let	b1, ..., bm, c1, ..., cnbe	atoms.	A	constraint	is	of	
the	form:

:- b1, …, bm, not c1, …, not cn.

The	body	of	the	constraint	must	not	be	satisfied.	Constraints	
are	used	to	filter	out	unwanted	answer	sets.

Body



Answer	Sets	and Entailment
The	answer	sets	of	a	program	are	a	special	subset	of	its	Herbrand models.

An	atom	A is	bravely	entailed	by	a	program	P if	it	is	true	in	at	least	one	answer	set	
of	P (written	P	⊨b		A).	

An	atom	A	is	cautiously	entailed	if	it	is	true	in	every answer	set	of	P (written	P	⊨c		A).

⊨b  p
⊨b  q
⊨b  r
⊨c  r

1 {p ; q} 1.
r.



Abduction	in	ASP
Consider	the	abductive	task:

How	could	we	represent	this	in	ASP?

wobblyWheel :- brokenSpokes.
wobblyWheel :- flatTyre.
flatTyre :- leakyValve.
flatTyre :- puncturedTube.

B

wobblyWheel
AbO

brokenSpokes
puncturedTube
leakyValve

IC
:- not puncturedTube, leakyValve.

0 { brokenSpokes; puncturedTube; leakyValve } 3.
wobblyWheel :- brokenSpokes
wobblyWheel :- flatTyre
flatTyre :- leakyValve
flatTyre :- puncturedTube.
:- not puncturedTube, leakyValve.
:- not wobblyWheel.



Semantics	of	Weak	Constraints
Weak	constraints	represent	preferences	in	ASP.

:~ bought(Item), cost(Item, M). [M@1, Item, M]

For	any	program	P and	answer	set	A,	Weak(P,	A) is	the	set	of	all	(unique)	tails	of	
weak	constraints	in	ground(P) whose	body	is	satisfied	by	A.

The	aim	is	to	minimise	the	sum	∑ wt�
%&@()*,&,,…&. ∈0)12(4,5) .

High	priority	levels	are	more	important	than	low	priority	levels.

Body																																Weight																	Priority	Level									Terms

Tail



:~ mode(Leg, walk), crime_rating(Leg, C), C > 4 . [1@3, Leg]
:~ mode(Leg, bus) . [1@2, Leg]
:~ mode(Leg, walk), distance(Leg, Distance) . [Distance@1, Leg]

Journey A

• Walk 400m through 
an area with crime 
rating of 2. 

• Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

• Walk 1km through an 
area with crime 
rating 5. 

Journey C

• Take the bus 400m 
through an area with 
crime rating of 2.

• Take a second bus 
3km through an area 
with crime rating 4

Journey D

• Take a bus 2km 
through an area with 
crime rating 5.

• Walk 2km through an 
area with crime 
rating 1.

Journey	A	>	Journey	D	>	Journey	C	>	Journey	B

Avoid walking 
through areas with 
a high crime rating

Minimise the 
number of buses

Minimise the 
distance walked

What	is	the	ordering	of	the	4	journeys?

Journey	Preference	Example



Logic-based	Learning	under	the	Answer	Set	
Semantics



Induction	for	definite	programs
Standard setting for ILP:

• Background knowledge B a definite program
• Positive examples E+ atoms
• Negative examples E- atoms
• Find a hypothesis H such that:

∀e+ ∈ E+ : B U H ⊨ e+

∀e- ∈ E- : B U H ⊭ e-



Cautious	Induction
Cautious setting for ILP under the Answer Set semantics:

• Background knowledge B an ASP program
• Positive and negative examples E+ and E- (atoms)
• Find a hypothesis H such that:

• B U H is satisfiable (has at least one Answer Set)
• for all Answer Sets A of B U H :

∀e+ ∈ E+ : e+ ∈ A
∀e- ∈ E- : e- ∉ A



Cautious	Induction	:	Example

Which	of	the	following	hypotheses	are	cautious	inductive	solutions?

s.
:- not s.
:- q.

p.
s.

r. 

p :- not q.
q :- not p, not r.
s :- r.

B
s

E+

q

E-



Cautious	Induction	:	Example

Which	of	the	following	hypotheses	are	cautious	inductive	solutions?

s.
:- not s.
:- q.

p.
s.

r. 

{ p, s },
{ q, s }

NONE! { p, s } {p, r, s }

p :- not q.
q :- not p, not r.
s :- r.

B
s

E+

q

E-



Cautious	Induction	:	Example

Which	of	the	following	hypotheses	are	cautious	inductive	solutions?

s.
:- not s.
:- q.

p.
s.

r. 

{ p, s },
{ q, s }

NONE! { p, s } {p, r, s }

X X ✓ ✓

p :- not q.
q :- not p, not r.
s :- r.

B
s

E+

q

E-



Cautious	Induction	:	Limitations
What	examples	could	we	give	to	learn	the	program:

1 { value(C, heads); value(C, tails) } 1 :- coin(C).

coin(c1).



Brave	Induction
Brave setting for ILP under the Answer Set semantics:

• Background knowledge B an ASP program
• Positive and negative examples E+ and E- (atoms)
• Find a hypothesis H such that:

• there is at least one Answer Set A of B U H :

∀e+ ∈ E+ : e+ ∈ A
∀e- ∈ E- : e- ∉ A



Brave Induction	:	Example

Which	of	the	following	hypotheses	are	brave inductive	solutions?

s.
:- not s.
:- q.

p.
s.

r. 

{ p, s },
{ q, s }

NONE! { p, s } {p, r, s }

p :- not q.
q :- not p, not r.
s :- r.

B
s

E+

q

E-



Brave Induction	:	Example

Which	of	the	following	hypotheses	are	brave inductive	solutions?

s.
:- not s.
:- q.

p.
s.

r. 

{ p, s },
{ q, s }

NONE! { p, s } {p, r, s }

✓ X ✓ ✓

p :- not q.
q :- not p, not r.
s :- r.

B
s

E+

q

E-



Implementations
Two	of	the	main	non-monotonic	ILP	algorithms	compute	the	solutions	to	
brave	induction	tasks:

• XHAIL	(Ray	09)

• An	extension	of	the	HAIL	algorithm.

• ILED	(Katzouris,	Artikis,	Paliouras,	2015)	and	Inspire	(Kamzi,	Schüller,	
Saygın,	2017)	are	extensions	of	XHAIL.

• ASPAL	(Corapi,	Russo,	Lupu 2011)

• Encodes	of	a	brave	ILP	task	into	an	ASP	program.

• RASPAL	(Athakravi,	Corapi,	Broda,	Russo)	is	an	extension	of	ASPAL.

• We	will	only	have	time	to	cover	ASPAL	in	this	tutorial.



ASPAL:	Skeleton	rules
A	skeleton	rule	for	mode	declarations	<Mh,	Mb>	is	a	compatible	
rule	where	all	the	constants	placemarkers	are	replaced	with	
different	variables	instead	of	constants.

The	rule	penguin(V1) :- bird(V1), not can(V1, C1). represents:

penguin(V1) :- bird(V1), not can(V1, fly).
penguin(V1) :- bird(V1), not can(V1, swim).

modeh(penguin(+bird))
modeb(not can(+bird, #ability))

Mh,	Mb

bird(a). bird(b).
ability(fly).  ability(swim).
can(a, fly).  can(b, swim).

B



ASPAL:	Skeleton	Rules

Lmax is	the	maximum	number	of	literals	allowed to	appear	in	the	body (not	
including	atoms	used	to	enforce	types).

Vmax is	the	maximum	number	of	variables.

modeh(penguin(+bird))
modeb(not can(+bird, #ability))

Mh,	Mb

bird(a). bird(b).
ability(fly).  ability(swim).
can(a, fly).  can(b, swim).

B

Lmax =	2,	 Vmax	=	1

penguin(V1) :- bird(V1).
penguin(V1) :- bird(V1), not can(V1, C1).
penguin(V1) :- bird(V1), not can(V1, C1), not can(V1, C2).

SkM



ASPAL:	ASP	encoding
Given	SM,	B,	E+,	and E-,	we	can	encode	the	search	for	inductive	
solutions	as	an	ASP	program.

We	assign	each	rule	R in	SkM a	unique	identifier	RID.

Each	R in SkM is	associated	with	a	meta	level	atom	rule(RID, C1, …, Cn),	
called Rmeta. The	ground	instances	of	these	atoms	represent	rules	in	SM.

e.g.	Given the	skeleton	rule	p(V1, V2) :- q(V1, C1), r(V2, C2) with	ID	
2, the	atom	rule(2, a, b) represents:

p(V1, V2) :- q(V1, a), r(V2, b).

The	goal	is	to	find	these	atoms	using	ASP.



ASPAL:	ASP	encoding	example

% Examples
goal :- penguin(b), not penguin(a).
:- not goal.

bird(a). bird(b).
ability(fly). ability(swim).
can(a, fly).  can(b, swim).

B
penguin(b)

E+

penguin(a)

E-

% Background
bird(a). bird(b).
ability(fly). ability(swim).
can(a, fly). can(b, swim).

% Skeleton Rules
penguin(V1) :- bird(V1), rule(1).
penguin(V1) :- bird(V1), not can(V1, C1), rule(2, C1).
penguin(V1) :- bird(V1), not can(V1, C1), not can(V1, C2), rule(3, C1, C2).

% Generate Hypotheses

0 {rule(1);  rule(2, fly);  rule(2, swim); rule(3, fly, swim) } 4.



ASPAL:	ASP	encoding
Given	SM,	B,	E+,	and E-,	we	can	encode	the	search	for	inductive	solutions	
as	an	ASP	program.

If	we	add	a	weak	constraint	:~ Rmeta.[|R|@1, Rmeta] for	each	R in	SkM,	the	
optimal	answer	sets	represent	the	optimal	solutions	of	T.



ASPAL:	ASP	encoding	example

% Examples
goal :- penguin(b), not penguin(a).
:- not goal.

bird(a). bird(b).
ability(fly). ability(swim).
can(a, fly).  can(b, swim).

B
penguin(b)

E+

penguin(a)

E-

% Background
bird(a). bird(b).
ability(fly). ability(swim).
can(a, fly). can(b, swim).

% Skeleton Rules
penguin(V1) :- bird(V1), rule(1).
penguin(V1) :- bird(V1), not can(V1, C1), rule(2, C1).
penguin(V1) :- bird(V1), not can(V1, C1), not can(V1, C2), rule(3, C1, C2).

% Generate Hypotheses

0 {rule(1);  rule(2, fly);  rule(2, swim); rule(3, fly, swim) } 4.
:~ rule(1).[1@1, 1]
:~ rule(2, C1).[2@1, 2, C1]
:~ rule(3, C1, C2).[3@1, 3, C1, C2]



Brave	Induction	:	Limitations

Consider	a	background	knowledge:

1 {value(C, heads); value(C, tails) } 1 :- coin(C).

coin(c1). 

biased_coin(c1).

What	examples	could	we	give	to	learn	the	constraint

:- value(C, heads), biased_coin(C).



Learning	from	Answer	Sets



Answer	Set	Programming

Problem

ASP	
program

Answer	
Sets

Solutions



Example	
Solutions

Example	
Answer	Sets

ASP	
Program

Problem

Inductive	Learning	of	Answer	Set	
Programs
From	examples	of	what	should/shouldn’t	be	an	Answer	Set,	we	learn	an	
appropriate	hypothesis



Example	
Solutions

Example	
Answer	Sets

ASP	
Program

Rules	of	
Sudoku

Inductive	Learning	of	Answer	Set	
Programs
We	can	learn	the	rules	of	sudoku from	examples	boards

1	#count	{	value(1,	C);	value(2,	C);	value(3,	C);	value(4,	C)	}	1	
:- cell(C).
:- value(V,	C1),	value(V,	C2),	same_row(C1,	C2).
:- value(V,	C1),	value(V,	C2),	same_block(C1,	C2).
:- value(V,	C1),	value(V,	C2),	same_col(C1,	C2).

ASP	Representation	of	
Sudoku



Partial	Interpretations
A	partial	interpretation	e is	a	pair	of	sets	of	atoms	<einc,	eexc> the	inclusions and	
the	exclusions.

A	Herbrand Interpretation	I extends a	partial	interpretation	e if	and	only	if:
einc⊆ I
eexc ∩	I	=	∅

{ p, q } and { p, q, s } both	extend	< { p, q }, { r } >

Neither	{ p } or	{ p, q, r } do.



Learning	from	Answer	Sets
LAS	setting	for	ILP	under	the	Answer	Set	semantics:

• Background	knowledge	B	an	ASP	program
• Positive	and	negative	examples	E+ and E- (partial	interpretations)
• Hypothesis	space	SM (a	set	of	normal	rules,	choice	rules	and	constraints):
• Find	a	hypothesis	H such	that:

• H ⊆ SM

∀e+ ∈ E+: ∃A ∈ AS(B ⋃ H) st A extends e+

∀e-∈ E-: ∄ A ∈ AS(B ⋃ H) st A extends e-



LAS:	relation	to	brave	induction



Brave Induction	Relationship :	Example
Reconsider	the	Brave	Induction	task:

What	is	the	equivalent	ILPLAS task?
< B, { <{s}, {q}> }, { } >

s.
:- not s.
:- q.

p.
s.

r. 

{ p, s },
{ q, s }

NONE! { p, s } {p, r, s }

✓ X ✓ ✓

p :- not q.
q :- not p, not r.
s :- r.

B
s

E+

q

E-



LAS:	relation	to	cautious	induction

ILPcautioushB, {e+1 , . . . , e+m}, {e�1 , . . . , e�n }i

Positive	
Example

Negative	
Example

ILPLAShB, {h;, ;i}, {h;, {e+1 }i . . . h;, {e+m}i, h{e�1 }, ;i . . . h{e�n }, ;i}i



Cautious	Induction	Relationship:	Example
Reconsider	the	Cautious	Induction	task:

What	is	the	equivalent	ILPLAS task?
< B, { <{}, {}> }, { <{}, {s}>, <{q}, {}> } > 

s.
:- not s.
:- q.

p.
s.

r. 

{ p, s },
{ q, s }

NONE! { p, s } {p, r, s }

X X ✓ ✓

p :- not q.
q :- not p, not r.
s :- r.

B
s

E+

q

E-



Context-dependent	Examples



Input	to	Answer	Set	Programs

General	Rules

Input	(Context)

Answer	SetsSOLVER

%	General	rules:
0 { in(X, Y) } 1 :- edge(X, Y).
reach(1).     reach(Y) :- reach(X), in(X, Y).
:- node(X), not reach(X).
:- in(X, Y), in(X, Z), Y != Z.

%	Input	context:
node(1..4).  edge(1, 2). edge(2, 3).
edge(2, 4).  edge(3, 4). edge(4, 1).

Answer	Sets:

node(1..4), edge(1, 2), edge(2, 3), 
edge(2, 4), edge(3, 4), edge(4, 1),
reach(1..4), in(1, 2), in(2, 3),
in(3, 4), in(4, 1) 



Input	to	Answer	Set	Programs

General	Rules

Input	(Context)

Answer	SetsSOLVER

%	General	rules:
0 { in(X, Y) } 1 :- edge(X, Y).
reach(1).     reach(Y) :- reach(X), in(X, Y).
:- node(X), not reach(X).
:- in(X, Y), in(X, Z), Y != Z.

%	Input	context:
node(1..4).  edge(1, 2). edge(2, 4).

edge(3, 4). edge(4, 1).

Answer	Sets:

UNSATISFIABLE



Context-dependent	Examples
A	Context	Dependent	Partial	Interpretation (CDPI)	is	a	pair	𝑒 =
⟨𝑒<=, 𝑒>?@⟩,	where	𝑒<= is	a	partial	interpretation	and	𝑒>?@ is	an	ASP	
program.

Given	a	program	𝑃 and	an	interpretation	𝐼,	𝐼 is	an	accepting	answer	set	
of	𝑒 wrt 𝑃 iff 𝐼 ∈ 𝐴𝑆(𝑃 ∪ 𝑒>?@) and	𝐼 extends	𝑒<=.

1. {𝑝} is an	accepting	answer	set	of	 {𝑝 , ∅⟩, ∅ 	wrt P
2. {} is	not	an	accepting	answer	set	of			 ∅, {𝑝 ⟩, ∅ 	wrt P
3. {𝑝} is	not	an	accepting	answer	set	of	 {𝑝 , ∅⟩, {	𝑞. } 	wrt P
4. {𝑞} is	an	accepting	answer	set	of			 ∅, {𝑝 ⟩, {	𝑞. } 	wrt P

% P:
p :- not q.



Context-dependent	LAS
Context-dependent	LAS	setting:
• Background	knowledge	𝐵	 (ASP	program)
• Positive	and	negative	examples	𝐸S and 𝐸T (CDPIs)
• Hypothesis	space	𝑆U (normal/choice	rules,	constraints)
• Find	a	hypothesis	𝐻 such	that:

1. 𝐻 ⊆ 𝑆U
2. ∀𝑒S ∈ 𝐸S:	at	least	one accepting	answer	set	of	𝑒S wrt 𝐵 ∪ 𝐻
3. ∀𝑒T ∈ 𝐸T:	no accepting	answer	sets	of	𝑒T wrt 𝐵 ∪ 𝐻



Example
𝐼𝐿𝑃Z[\>]^?_@? allows	for	a	natural	representation	of	contextual	
information	(such	as	weather	conditions).

𝐵 = ∅,									𝐸S = 	 {`]_]b? ,∅⟩,∅
∅, `]_]b? , 	cd=^=^`.	

, 							 𝐸T = ∅

One	solution	is:

go_out :- not raining.



B: H:

Hamilton	in	LAS

0 { in(V0, V1) } 1 :- edge(V0, V1).
reach(V0) :- in(1, V0).
reach(V1) :- in(V0, V1), reach(V0).
:- node(V0), not reach(V0).
:- in(V0, V1), in(V0, V2), V1 != V2.

1 { size(1..4) } 1.
node(1..N) :- size(N).
0 { edge(V0, V1) } 1 :- node(V0),

node(V1).

size(4)
edge(1, 2)
edge(2, 3)
edge(3, 4)
edge(4, 1)

edge(1, 1)
edge(1, 3)
edge(1, 4)

...



B: H:

Efficient	Hamilton	in	Context-
dependent	LAS

0 { in(V0, V1) } 1 :- edge(V0, V1).
reach(V0) :- in(1, V0).
reach(V1) :- in(V0, V1), reach(V0).
:- node(V0), not reach(V0).
:- in(V0, V1), in(V0, V2), V1 != V2.

% EMPTY

edge(1, 1)
edge(1, 3)
edge(1, 4)

...

node(1..4).
edge(1, 2).
edge(2, 3).
edge(3, 4).
edge(4, 1).



Logic-based	Learning
of	Preferences



Preference	Learning
There	are	many	approaches	to	preference	learning:

Collaborative	filtering approaches	identify similar	users,	and	one	user	is	
recommended	an	item	based	on	the	actions	of	other	users.

“Students	with	your	chosen	courses	also	took
knowledge	representation.”

Object	ranking approaches,	aim	to	learn	an	ordering	over	a	set	of	
objects,	based	on	examples	of	which	objects	are	preferred	to	others.

In	ASP,	objects	are	represented	by	answer	sets,	and	the	preference	
ordering	is	represented	by	the	weak	constraints’	ordering	of	the	
answer	sets.



(Context-dependent)	Ordering	Examples
An	ordering	example	is	a	pair	of	CDPIs	⟨𝑒e, 𝑒f⟩.

• Roughly	speaking,	the	learned	weak	constraints	should	
mean	that	𝑒e is	preferred	to	𝑒f.

There	are	two	notions	of	coverage	for	ordering	examples:	
brave and cautious.

• For	an	ordering	to	be	bravely	respected,	there	must	be	at	
least	one	pair	of	accepting	answer	sets	𝐴e and	𝐴f of	𝑒e and	
𝑒f (wrt 𝐵 ∪ 𝐻)	such	that	𝐴e is	preferred	to	𝐴f.

• For	an	ordering	to	be	cautiously	respected,	for	each	pair	of	
accepting	answer	sets	𝐴e and	𝐴f of	𝑒e and	𝑒f (wrt 𝐵 ∪ 𝐻),	
𝐴e must	be	preferred	to	𝐴f.



Example

𝐻 = g
	
,

𝐵 = ∅

Does	𝐵 ∪ 𝐻 bravely	respect	the	following	example?

∅, ∅ ,

h]i_ e,jdkl .
h]i_ f,mbn .

i=n?d^>_ e,eooo .
i=n?d^>_ f,pooo .
>c=h__cd?=^` e,f .
>c=h__cd?=^` f,q .

, ∅, ∅ ,

h]i_ e,mbn .
h]i_ f,jdkl .

i=n?d^>_ e,rooo .
i=n?d^>_ f,fooo .
>c=h__cd?=^` e,p .
>c=h__cd?=^` f,q .

:~ mode(Leg, walk), crime_rating(Leg, C), C > 4 . [1@3, Leg]
:~ mode(Leg, bus) . [1@2, Leg]
:~ mode(Leg, walk), distance(Leg, Distance) . [Distance@1, Leg]

✓



Example

𝐻 = g
	
,

𝐵 = ∅

Does	𝐵 ∪ 𝐻 cautiously	respect	the	following	example?

∅, ∅ ,

h]i_ e,jdkl .
h]i_ f,mbn .

i=n?d^>_ e,eooo .
i=n?d^>_ f,pooo .
>c=h__cd?=^` e,f .
>c=h__cd?=^` f,q .

, ∅, ∅ ,

h]i_ e,mbn .
h]i_ f,jdkl .

i=n?d^>_ e,rooo .
i=n?d^>_ f,fooo .
>c=h__cd?=^` e,p .
>c=h__cd?=^` f,q .

:~ mode(Leg, walk), crime_rating(Leg, C), C > 4 . [1@3, Leg]
:~ mode(Leg, bus) . [1@2, Leg]
:~ mode(Leg, walk), distance(Leg, Distance) . [Distance@1, Leg]

✓



Example

𝐻 = g
	
,

𝐵 = 	0 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 1.	

Does	𝐵 ∪ 𝐻 cautiously	respect	the	following	example?

∅, ∅ ,

h]i_ e,mbn .
h]i_ f,mbn .

i=n?d^>_ e,eooo .
i=n?d^>_ f,pooo .
>c=h__cd?=^` e,f .
>c=h__cd?=^` f,q .

, ∅, ∅ ,

h]i_ e,mbn .
h]i_ f,jdkl .

i=n?d^>_ e,rooo .
i=n?d^>_ f,fooo .
>c=h__cd?=^` e,p .
>c=h__cd?=^` f,p .

:~ mode(Leg, walk), crime_rating(Leg, C), C > 4 . [1@3, Leg]
:~ mode(Leg, bus) , not raining. [1@2, Leg]
:~ mode(Leg, walk), distance(Leg, Distance) . [Distance@1, Leg]

✗



Example

𝐻 = g
	
,

𝐵 = 	0 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 1.	

Does	𝐵 ∪ 𝐻 bravely	respect	the	following	example?

∅, ∅ ,

h]i_ e,mbn .
h]i_ f,mbn .

i=n?d^>_ e,eooo .
i=n?d^>_ f,pooo .
>c=h__cd?=^` e,f .
>c=h__cd?=^` f,q .

, ∅, ∅ ,

h]i_ e,mbn .
h]i_ f,jdkl .

i=n?d^>_ e,rooo .
i=n?d^>_ f,fooo .
>c=h__cd?=^` e,p .
>c=h__cd?=^` f,p .

:~ mode(Leg, walk), crime_rating(Leg, C), C > 4 . [1@3, Leg]
:~ mode(Leg, bus) , not raining. [1@2, Leg]
:~ mode(Leg, walk), distance(Leg, Distance) . [Distance@1, Leg]

✓



Context-dependent	LOAS
Context-dependent	Learning	from	Ordered	Answer	Sets	setting:
• Background	knowledge	𝐵	 (ASP	program)
• Positive	and	negative	examples	𝐸S and 𝐸T (CDPIs)
• Brave	and	cautious	ordering	examples	(CDOEs)
• Hypothesis	space	𝑆U (normal/choice	rules,	hard/weak	constraints)
• Find	a	hypothesis	𝐻 such	that:

1. 𝐻 ⊆ 𝑆U
2. ∀𝑒 ∈ 𝐸S:	at	least	one	accepting	answer	set	of	𝑒 wrt 𝐵 ∪ 𝐻
3. ∀𝑒 ∈ 𝐸T:	no	accepting	answer	sets	of	𝑒 wrt 𝐵 ∪ 𝐻
4. ∀𝑜 ∈ 𝑂m:	𝐵 ∪ 𝐻 must	bravely	respect 𝑜
5. ∀𝑜 ∈ 𝑂>:	𝐵 ∪ 𝐻 must	cautiously	respect 𝑜



Logic	Based	Learning	from
Noisy	Examples



An	unfortunate	lack	of	perfection
Until	now,	we	have	assumed	that	all	examples	are	perfectly	labelled.	
In	the	real	world	some	examples	may	be	noisy.

Consider	the	𝐼𝐿𝑃m task	T = 𝐵,𝑀, 𝐸S, 𝐸T ,	where:

𝐵			 = 	 		𝑡 1). … 𝑡(10 .		
𝑀		 = 	 	#𝑚𝑜𝑑𝑒ℎ(𝑞 +𝑡 ).	
𝐸S	 = 	 	𝑞 1 , 𝑞 2 , … , 𝑞 9 	
𝐸T	 = 	 	𝑞 10 	

This	task	is	UNSATISFIABLE,	but	there	is	a	hypothesis	that	covers	all	
but	one	of	the	examples!



An	unfortunate	lack	of	perfection
Until	now,	we	have	assumed	that	all	examples	are	perfectly	labelled.	In	the	
real	world	some	examples	may	be	noisy.

Consider	the	𝐼𝐿𝑃m task	T = 𝐵,𝑀, 𝐸S, 𝐸T ,	where:

𝐵			 = 	 		𝑡 1. . 12 . 		𝑓 2. . 4 . 			𝑚𝑢𝑙 2, … . 		𝑚𝑢𝑙 3, … . 	𝑚𝑢𝑙 4, … .		

𝑀		 = 	
		𝑚𝑜𝑑𝑒ℎ(𝑞 +𝑡 ).

	𝑚𝑜𝑑𝑒𝑏 ∗,𝑚𝑢𝑙 #𝑓,+𝑡 .
		𝑚			𝑜𝑑𝑒𝑏 ∗, 𝑛𝑜𝑡	𝑚𝑢𝑙 #𝑓,+𝑡

𝐸S	 = 	 	𝑞 1 , 𝑞 2 , … , 𝑞 5 , 𝑞 7 , … , 𝑞(12)	
𝐸T	 = 	 	𝑞 6 	
The	only	solution	of	this	task	is:

q 𝑋 ← 𝑡 𝑋 , 𝑛𝑜𝑡	𝑚𝑢𝑙 2, 𝑋 .	
𝑞 𝑋 ← 𝑡 𝑋 , 𝑛𝑜𝑡	𝑚𝑢𝑙 3, 𝑋 .
𝑞 𝑋 ← 𝑡 𝑋 ,𝑚𝑢𝑙 4, 𝑋 .

There	is	a	simpler	hypothesis	that	covers	all	but	one	example:
q 𝑋 ← 𝑡 𝑋 .



Weighted/Penalised	Examples
Given	any	ILP	framework	𝐼𝐿𝑃�,	an	n(𝐼𝐿𝑃�) task	is	an	𝐼𝐿𝑃� task	such	that	every	
example	has	been	annotated	with	a	weight	– either	a	positive	integer	or	∞.

Consider	the	𝑛(𝐼𝐿𝑃m) task	T = 𝐵,𝑀, 𝐸S, 𝐸T ,	where:

𝐵			 = 	 		𝑡 1. . 10 .		
𝑀		 = 	 	#𝑚𝑜𝑑𝑒ℎ(𝑞 +𝑡 ).	
𝐸S	 = 	 	𝑞 1 @1, 𝑞 2 @1,… , 𝑞 9 @1	
𝐸T	 = 	 	𝑞 10 @1	

Given	any	hypothesis	𝐻,	𝑆 𝐻, 𝑇 = 𝐻 + ∑ 𝑤�
_@j∈� ,	where	𝑈 is	the	set	of	

examples	in	𝑇 that	are	not	covered	by	𝐻.

An	inductive	solution	must	have	a	finite	score	and	an	optimal	inductive	solution	
is	a	solution	with	minimum	score.

What	are	the	(optimal)	inductive	solutions	of	𝑻?

∅ (with the score of 9) 
𝑞 𝑋 ← 𝑡 𝑋 . (with the score of 2) 



Example
Consider	the	𝑛(𝐼𝐿𝑃m) task	T = 𝐵,𝑀, 𝐸S, 𝐸T ,	where:

𝐵			 = 	 		𝑡 1. . 10 .		
𝑀		 = 	 	#𝑚𝑜𝑑𝑒ℎ(𝑞 +𝑡 ).	
𝐸S	 = 	 	𝑞 1 @1, 𝑞 2 @1,… , 𝑞 9 @1	
𝐸T	 = 	 	𝑞 10 @∞	

What	are	the	optimal	inductive	solutions	of	𝑻?

∅ (with	the	score	of	9)	



Example
Consider	the	𝑛(𝐼𝐿𝑃m) task	T = 𝐵,𝑀, 𝐸S, 𝐸T ,	where:

𝐵			 = 	 		𝑡 1. . 10 .		
𝑀		 = 	 	#𝑚𝑜𝑑𝑒ℎ(𝑞 +𝑡 ).	
𝐸S	 = 	 	𝑞 1 @1, 𝑞 2 @∞,… , 𝑞 9 @1	
𝐸T	 = 	 	𝑞 10 @∞	

What	are	the	optimal	inductive	solutions	of	𝑻?

𝑈𝑁𝑆𝐴𝑇𝐼𝑆𝐹𝐼𝐴𝐵𝐿𝐸



Solving	penalised	brave	induction	with	ASP
The	ASPAL	encoding	of	an	𝐼𝐿𝑃m task	 𝐵,𝑀, 𝑒eS, … , 𝑒hS , 𝑒eT, … , 𝑒^T contains	the	
rules:

goal :- eeS, … , e�S , not	eeT, … , e�T.
:- not goal.

The	n(ASPAL)	encoding	of	an	n(ILP ) task	⟨B,M, {eeS@weS, … , e�S@w�
S},

eeT@weT, … , e�T@w�
T ⟩ instead	contains	the	weak	constraints:

:~ not	eeS. weS@1, eeS
	…

:~ not	e�S . w�
S@1, e�S

:~ eeT. weT@1, eeT
	…

:~ e�T. w�
T@1, e�T



Learning	from	Noisy	Examples	Demo



ILASP	summary

Version
Efficient	for	tasks	with

negative	examples many	examples noise large	hypothesis	spaces

1 ✘ ✘ ✘ ✘

2 ✓ ✘ ✘ ✘

2i ✓ ✓ ✘ ✘

3 ✓ ✓ ✓ ✘

ILASP4	is	currently	in	development.	The	aim	is	to	address	scalability	
with	respect	to	the	size	of	the	hypothesis	space.

All	versions	of	ILASP	are	sound	and	complete,	and	therefore	
guaranteed	to	return	an	optimal	solution	of	any	satisfiable task.

ILASP	is	available	to	download	from	www.ilasp.com



Summary
This	tutorial	has	covered:
• Brave	and	cautious	induction
• ASPAL
• Learning	from	Answer	Sets
• Context-dependent	learning
• Preference	learning

• ILASP
• Learning	from	noisy	examples

The	lecture	notes	also	cover:
• Other	ASP-based	ILP	algorithms
• Complexity/generality	of	the	learning	

frameworks



ILASP



Inductive	Learning	of	Answer	Set	Programs
Inductive	Learning	of	Answer	Set	Programs	(ILASP)	is	the	algorithm	which	
was	developed	to	solve	LAS	tasks.	

A hypothesis H 2 positive solutionshB,SM , E
+
, E

�i if and only if:

1. H ✓ SM

2. 8e+ 2 E
+ 9A 2 AS(B [H) st A extends e

+

A hypothesis H 2 violating solutionshB,SM , E
+
, E

�i if and only if:

1. H ✓ SM

2. 8e+ 2 E
+ 9A 2 AS(B [H) st A extends e

+

3. 9e� 2 E
� 9A 2 AS(B [H) st A extends e

�

ILPLAShB,SM , E
+
, E

�i
= positive solutionshB,SM , E

+
, E

�i\violating solutionshB,SM , E
+
, E

�i



ILASP:	Summary

vs = violating solutions of length n
solutions = positive solutions of length n not in vs



ILASP1/2	Demo



ILASP1/2	are	slow…

Both	ILASP1	and	ILASP2	use	a	meta	representation	whose	
grounding	is	proportional	to	the	number	of	examples.



Relevant	Examples
In	real	tasks,	many	examples	may	be	explained	by	the	same	
hypotheses.

• In	ILASP1	and	ILASP2,	the	grounding	of	the	meta-program	is	
proportional	to	the	number	of	examples.

• As	ILASP	learns	non-monotonic	programs,	it	cannot	
iteratively	learn	a	hypothesis	using	a	traditional	cover	loop.

• Instead,	ILASP2i	iteratively	builds	a	relevant subset	of	the	
examples,	and	in	each	iteration	uses	ILASP2	to	solve	a	task	
with	this	(usually)	smaller	subset	of	the	examples.


