
Logic-based Learning

Alessandra Russo and Mark Law

Joint Tutorial

‣ Introducing Logic-based Learning

‣ Learning from entailment

- Definition of learning task

- Semantics

- Algorithms

‣ Non-Monotonic Learning

- Meta-level Learning

‣ Some applications

Overview

Machine Learning in AI…

Deep neural networks learns from human
expert games and games of self-play.  
[Nature 2016]

Single system teaches itself to
master chess, shoji and go,
using rules of the game.

Facial emotion  
recognition

Facial recognition

Bounding box for
object detection

Object segmentation

Deep Machine

Learning

Learns from large datasets
Very effective for single specific tasks
Sometimes better than humans

Advantages

Not able to use prior knowledge
Not able to generalise
Learned models are not
interpretable

Drawbacks

Inactive molecules

Active molecules

Automate scientific process using AI techniques to carry out cycles
of scientific experiments. Automatically originate hypothesis that
explain observations, device experiments to validate the hypothesis
and physically run the experiments 
[Letters to Nature 2003]

Carcinogenicity, structural description of
organic compounds

Training
Examples

Existing Declarative Knowledge (BK)

s(0, 3) + np(X, Y) ← word(“She”, X, Y) word(“She”, 0, 1)

mod(X, Y) ← word(quickly, X, Y) word(quickly, 2, 3)

s(X, Y) ← np(X, Z), vp(Z, Y) word(ran, 1, 2)

vp(X, Y) ← v(X, Y) ← v(1, 3)

Training 
Examples

Learning Grammars

Learned knowledge Prior knowledge

… Logic-based Learning in AI

Uses prior knowledge
Able to generalise
Can support continuous learning
Learns from few examples
Learned models are interpretable

Advantages

Logic-based Learning

… Logic-based Learning in AI

General-purpose machine learning algorithms
‣ learn from small (noisy) labelled structured data using declarative prior knowledge
‣ learn declarative knowledge expressed in some predicate logic formalism

- can support transfer and continuous learning
‣ learned models are interpretable, and guaranteed to meet semantic properties

Declarative knowledge
Clear semantics
Sound (and complete) inference

Extract information from data
Make predictions on unseen data
Learning from past observations

Machine 
Learning

Knowledge 
representation

Logic-based  
Learning Logic Programming

Answer Set 
Programming

s(X,Y)←np(X,Z),vp(Z,Y)
vp(X,Y)←v(X,Y)

vp(Start, End) ← v(Start, Middle), 
 mod(Middle, End)

BK ∪ H ⊨ e+

vp(Start, End) ← v(Start, Middle), 
 mod(Middle, End)

An intuitive example

“ She ran quickly ”

Learn the concept of “verb phrase”

Background knowledge
np(0, 1). 
v(1, 2). 
mod(2, 3).

BK

vp(1,3)0 1 2 3 e+

vp(0,1)e-

vp(0,3)e-

BK ∪ H ⊭ e-

Observation
Predicate
Learning

“ She ran quickly ” Non-Observation Predicate Learning

What about learning concepts that are different from the given example?

0 1 2 3 s(0,3)e+

s(0,1)e-

Learning as a search problem
Logic-based learning: a computational mechanism for inducing
declarative programs from examples of what is known to be
true or false (in the models of the learned programs).

How do we define a  
learning task?

How do we search for
solutions in a given  

search space?
Search space for 

computing

possible solutions

Empty&Program&

Given&specific&examples&

Possible(Programs(

Empty hypothesis

Hypothesis space

Learning Task: informal definition

Find
‣ Solution H ∈ SM such that:

- Covers(B, H, e) for every e ∈ E+ (H is complete)
- ¬Covers(B, H, e) for every e ∈ E- (H is consistent)

Given
‣ Set of positive examples (E+) and set of negative examples (E-) in Le

‣ Background knowledge (B) in LB
‣ Set of possible solutions (SM) in a language bias LH
‣ Covers relation over LB , LH and Le

[Logical Setting for concept-learning. Luc De Raedt, AIJ 95, 187-201]

Different notions of Covers relation capture different learning frameworks.

Find
‣ Solution H ∈ SM such that:

- Covers(B, H, e) for every e ∈ E+ (H is complete)
- ¬Covers(B, H, e) for every e ∈ E- (H is consistent)

Learning Task: informal definition
Given
‣ Set of positive examples (E+) and set of negative examples (E-) in Le

‣ Background knowledge (B) in LB
‣ Set of possible solutions (SM) in a language bias LH
‣ Covers relation over LB , LH and Le

‣ Quality criterion over LB , LM and Le , scoring possible solutions

Find
‣ Solution H ∈ SM such that:

- Covers(B, H, e) for every e ∈ E+ (H is complete)
- ¬Covers(B, H, e) for every e ∈ E- (H is consistent)
- H has the highest quality.

[Logical Setting for concept-learning. Luc De Raedt, AIJ 95, 187-201]

Different notions of Covers relation capture different learning frameworks.

LB and LM are languages for definite clausal theories

A learning from entailment task TLFE is a tuple (B, SM, E+,E-) where
 B is a definite clausal theory,

SM is a set of clauses,
E+ and E- are sets of facts
Covers(B, H, e) iff B ∪ H ⊨	e , where H ⊆ SM

 A clausal theory H ⊆ SM is an inductive solution of TLFE if and only if
‣ Covers(B, H, e) ∀e ∈ E+
‣ ¬Covers(B, H, e) ∀e ∈ E-

Learning from entailment

LFE: example of learning task

E+ =
daughter(mary, ann)

daughter(eve, tom)

Consider TLFE = (B, SM, E+, E-) task given by:

daughter(tom, ann)
E- = daughter(eve, ann)

B =

parent(ann, mary)
parent(ann, tom)
parent(tom, eve)
parent(tom, ian)
female(ann)
female(mary)
female(eve)

h1 =

daughter(X,Y) ← parent(Y,X), female(X)

h2 =SM = daughter(X,Y) ← parent(Y,X)

h3 =

daughter(X,Y) ← female(X)

B ∪ {h1} ⊨ daughter(eve, ann) h1 is an not an inductive solution of TLFE

B ∪ {h2} ⊨ daughter(tom, ann) h2 is an not an inductive solution of TLFE

h3 is an inductive solution of TLFE

B ∪ {h3} ⊨ daughter(mary, ann)
B ∪ {h3} ⊨ daughter(eve, tom)
B ∪ {h3} ⊭ daughter(eve, ann)
B ∪ {h3} ⊭ daughter(tom, ann)

Early Algorithms and Systems…

2006

Ex
pr

es
siv

ity
 o

f i
nt

er
pr

et
ab

le
kn

ow
led

ge

1995 2001

Inthelex

1998

Progol

2000

Progol5

2003

Alecto

1999

Aleph

2009 201020082004 2011 2014 Year

Horn theories

Datalog

Normal Logic  
Programs

Answer Set 
Programs 

with choice

Answer Set 
Programs + 
preferences

ClaudienICL

Our recent advancement…

2006

Ex
pr

es
siv

ity
 o

f i
nt

er
pr

et
ab

le
kn

ow
led

ge

1995 2001

Inthelex

1998

Progol

2000

Progol5

2003

Alecto

1999

Aleph

2009 201020082004 2011 2014 Year

Horn theories

Datalog

Normal Logic  
Programs

Answer Set 
Programs 

with choice

Answer Set 
Programs + 
preferences

abductive method

Hail
Imparo

ILASP

TAL/ASPAL

meta-abductive  
method

XHail

abductive 
 method

ILASP2

Non-monotonic
learning

learning choice rules, hard
constraints and preferences

The complexity and generality of Learning Answer Set Programs, Mark Law, Alessandra Russo, Krysia Broda, AIJ (2018).

ClaudienICL

Learning from entailment
Definition

A LFE task TLFE is a tuple (B, SM, E+, E-) where B is a definite clausal theory, called
background knowledge, SM is a set of clauses, called hypothesis space, E+ is a set of
facts, called positive examples, and E- is a set of facts, called negative examples.
An hypothesis H ⊆ SM is an inductive solution of TLFE if and only if

 (i) B ∪ H⊨	e+					∀ e+ ∈ E+ (ii) B ∪ H⊭	e-						∀ e- ∈ E-

How do we search for solutions in a given hypothesis space?

SM

Generality Relation

Hi more general then Hj iff Hi ⊨	Hj

¬covers(B, Hi, e+) ⇒ ¬covers(B, Hj, e+)
covers(B, Hj, e-) ⇒ covers(B, Hi, e-)
 Hi generalises Hj iff Hi !-subsumes	Hj

Defining the hypothesis space
Language bias LH is defined declaratively by mode declarations.

head declaration: modeh(s)
body declaration: modeb(s)

 s is a ground atom with one or more
placemarkers: +t, -t, #t, where t denotes a type

modeh(grandfather(+p,+p))
modeb(father(+p,-p))
modeb(parent(+p,+p)

 where p is type person

M =
grandfather(X,Y) ←father(X,Z),
 parent(Z,Y) Compatible with M

grandfather(X,Y) ← parent(X,Z),
 father(Z,Y)

Not compatible  
with M

SM is the set of all clauses that are compatible with the set of mode declarations M.

Progol5

HAIL

Imparo

Mixed approach:

Covering loop over the set of positive examples

1.Compute most specific solution for a given example

2.Generalise the most specific clause.

Searching for solutions

SM

bottom-up 
search

‣ Plotkin’s least general generalisation
‣ Muggleton’s inverse resolution  

(GOLEM, CIGOL,…)

Use of efficient generalisation operators.

top-down 
search ‣ Shapiro’s refinement operators

‣ Quinlan’s FOIL system

Use of efficient specialisation operators.

Inverse entailment (IE) Approach
Mechanism for computing the most specific solution for a given example

Given a learning task TLFE = (B, SM, E+, E-), and an example e+ ∈ E+

B ∪ {h} ⊨ e+ iff B ∪ {¬e+} ⊨ ¬h

The negation of an hypothesis can be generated deductively from B ∪ {¬e+}.

Let ¬Bot(B,e+) be the negation of the most specific clause that  
covers a given examples, called Bottom Clause, denoted Bot(B,e+).

h is derivable by Bottom Generalisation iff  
h !-subsumes Bot(B,e+)

1. B ∪ {¬e+} ⊨ ¬l1∂ ∧ l2∂ ∧…∧ ln∂
¬Bot(B,e+)

 2. ¬Bot(B,e+) ⊨ ¬h h ⊨ Bot(B,e+) Bot(B, e+)

General

Specific

Progol
‣ Use Covering loop: compute an hypothesis for each seed example e+
‣ Mode Declarations M to constrain the computation of the Bot(B,e+)

¬Bot(B,e+) computed  
using SLD.

top-down specialisation 
to compute h

select seed e ∈ E+

normalise B and e

STARTSET

BOTTOMSET

SEARCH

add hypothesis h to B
remove cover from E +

E+ ≠ ∅

B' = B ∪ { h1, ..., hn }

Not able to support
non-observation

predicate learning

 Progol5

Computes (body) positive atoms in
¬Bot(B,e+) compatible with modeb

Top-down specialisation to  
compute h that θ-subsumes  
Bot(B,e+)

select seed e ∈ E+

normalise B and e

STARTSET

BOTTOMSET

SEARCH

add hypothesis h to B
remove cover from E +

E+ ≠ ∅

B' = B ∪ { h1, ..., hn }

Compute B*, by extending B with contrapositives, 
computes negated (head) atom in  
¬Bot(B*,e+) compatible with modeh

‣ Use Covering loop: compute an hypothesis for each seed example e+
‣ Mode Declarations M to constrain the computation of the Bot(B,e+)

 Progol5

select seed e ∈ E+

normalise B and e

STARTSET

BOTTOMSET

SEARCH

add hypothesis h to B
remove cover from E +

E+ ≠ ∅

B' = B ∪ { h1, ..., hn }

E+ = {p(a)}B = p(X) ←q(X)
r(a)

E- = {p(b)}
{ modeh(q(+any)), modeb(r(+any) }M =

B* =
p(X) ←q(X)
q*(X)←p*(X)
r(a)

¬e+ = {p*(a)}
q*(X)

p*(X)

�
!={X/a}

B∪{¬e+} ⊨ {¬q(a)}

Bot(B, e+) = q(a) ←r(a)
B∪{¬e+} ⊨ {r(a)}

h = q(X) ←r(X)

¬Bot(B, e+) = {¬q(a),r(a)}

‣ Use Covering loop: compute an hypothesis for each seed example e+
‣ Mode Declarations M to constrain the computation of the Bot(B,e+)

Incompleteness of Progol5
E+ = {a}B = a ←b, c

b ←c { c }h =

h is derivable by Bottom Generalisation but cannot be computed by Progol5

B∪{¬e+} = B∪{¬a} ⊨ ¬a ∧¬c c ∈ Bot(B,e)  
h θ-subsumes Bot(B,e+)

E+ = {a}
B* =

a ←b, c
c*←a*,b
b*←a*,c
b ←c
c*←b*

{ c }h = c*

a*, b b*

b

c

a*, c

c

� �

Failed SLD derivation

c ∉ STARTSET(B, e+)

Generalising Bottom Set
Theory completion by contrapositive is not sufficient to compute the  

full semantics of Bottom Generalisation

Bottom Set { lg | B ⋃ {¬e+} ⊨ ¬lg } = {" | B ⋃ {¬e+} ⊨ ¬"} ∪ {¬# | B ⋃ {¬e} ⊨ #}

= {" | B ⋃ " ⊨ e+} ∪ {¬# | B ⊨ #}
Abduction Deduction

Oliver Ray, Krysia Broda, Alessandra Russo. Generalised Kernel Sets for Inverse Entailment.  
ICLP 2004: 165-17.

KernelSet

"1 ← #11, …, #1m

"n ← #11, …, #1k

"i ← #i1, …, #ih

. .

. .

Abductive explanation
B ⋃ {"1,…,"1} ⊨ e+

Deductive consequences
B ⊨ #ij

Hybrid abductive inductive learning (HAIL)

Oliver Ray, Krysia Broda, Alessandra Russo, A Hybrid Abductive Inductive Proof Procedure.  
Logic Journal of the IGPL 12(5): 371-397 (2004).

e

…
…

Δ = {α1,… αn}

using B

K =
α1 ← β11,…,β1k

α2 ← β21,…,β2h

αn ← βn1,…,βnp
………………..

H =
a1 ← d11,…,d1k

a2 ← d21,…,d2h

an ← dn1,…,dnp
………………..

 

B = B ∪ H
E+ = { e ∈ E+ | B ⊭ e}

select seed e ∈ E+

normalise B and e

If E+ = ∅

E+ ≠ ∅

Consider a LFE task TLFE = (B, SM, E+, E-) where B is a definite clausal theory, SM is a
set of clauses, E+ is a set of positive examples and E- is a set of negative examples.

A clausal theory H is derivable by Kernel Set
Subsumption from B and e iff  
H !-subsumes K(B,e+).

(B, Ab, IC), abductive task:
Ab = {h! | modeh(h(.))}, IC possibly empty 
∆ = {"1,…,"n} ⊆ AbAbduction

B ⊢ #ij for any modeb(#(.))

Deduction

H !-subsumes K

Induction

HAIL example
E+ = sad(ale) 

sad(kb)

B =

sad(X) ←tired(X), poor(X)
academic(oli)
academic(ale)
academic(kb)
student(oli)
lecturer(ale)
lecturer(kb)

E- = sad(oli) 
poor(oli)

modeh(tired(+academic))  
modeh(poor(+academic) 
modeb(lecturer(+academic) 
modeb(academic`(+academic))

M =

1. Abduction:
∆ = {tired(ale), poor(ale)}

2. Deduction:
B ⊨ {academic(ale), academic(kb), lecturer(ale), lecturer(kb)}

 tired(ale) ←academic(ale), lecturer(ale)  
poor(ale)←academic(ale), lecturer(ale)Kg =

 tired(X) ←academic(X), lecturer(X) 
poor(X)←academic(X), lecturer(X)K =

tired(X)  
poor(X)← lecturer(X)3. H =

Further case of incompleteness
Progol5 incomplete for non-Observation Predicate Learning (non-OPL)
Bottom Set incomplete with respect to multiple clause learning
Yamamoto’s example

B = even(s(X)) ←odd(X)
even(0)

E+ = odd(s(s(s(0))))modeh(odd(s(+any)))
modeb(even(+any))

M =

H = odd(s(X))← even(X)Can we learn the following concept

Bot(B,e+) = {odd(s(s(s(0)))) ← even(0)} H not !-subsumes Bot(B,e+)

Kg (B,e+) = {odd(s(s(s(0)))) ← even(0)} H not !-subsumes K(B,e+)

So where is the problem?

Induction on Failure
Yamamoto’s example

B = even(s(X)) ←odd(X)
even(0)

E+ = odd(s(s(s(0))))

modeh(odd(s(+any)))
modeb(even(+any))

M =

abduce
e=odd(s(s(s(0))))

deduce
∆1 = {odd(s(s(s(0)))}

even(0)

∎
even(s(s(0)))

H = odd(s(X))← even(X)?

Induction on Failure
Yamamoto’s example

B = even(s(X)) ←odd(X)
even(0)

E+ = odd(s(s(s(0))))

modeh(odd(s(+any)))
modeb(even(+any))

M =

abduce
e=odd(s(s(s(0))))

even(0)
deduce

∆1 = {odd(s(s(s(0)))}

esec = even(s(s(0)))

deduce
∆2 = {odd((s(0))}

abduce

even(0)

T2

T1

T0 = { odd(s(s(s(0))) ← even(s(s(0)), even(0)}

T1 = { odd(s(0))) ← even(0) }

body atoms proved abductively

H = odd(s(X))← even(X)?

T0 = { odd(s(s(s(0))) ← even(s(s(0)), even(0)}

T1 = { odd(s(0))) ← even(0) }

T = T0 ∪ T1

odd(s(X)) ← even(X)}

H

⊨

Extending Kernel Sets to Connected Theories

α1
1
 ←β1

1,β1
2,...,β1

k1

α1
n1 ← ..., β1

kn1
.......{T1

α2
1
 ←β2

1,..., β2
j,...,β2

k2

α2
n2 ← ..., β2

3
 ,...,

.......{T2

αh
1
 ←βh

1,...

αh
nh ←βh

1,βh
2,..., β1

knh
.......{Tn

T = T1 ∪ T2 ∪ ... ∪ Tn

e
1) B ∪ T1

+ ⊨ E
2) B ∪ Tj

+ ⊨ Tj-1
- 1< j ≤ n-1

3) B ⊨ Tn
-

A clausal theory H is derivable by Connected Theory Generalisation
from B and e iff H !-subsumes T

IE: semantics generalisations

Kernel(B,e)

Bot(B,E)
H H

Kernel(B,e)

Bot(B,E)
H H

Bot(B,E)
H

But,…what about non-monotonic learning?
Ex

pr
es

siv
en

es
s

1995

Horn theories

2001

Inthelex

1998

Normal Logic  
Programs

Full Clausal Logic

Progol

2000

Progol5

2003

Alecto

1999

Aleph

2006 2009 20102008

TopLog

CF-Induction

Tal

meta-abductive  
method

XHail

abductive 
 method

Hail
Imparo

abductive method

Completeness

ClaudienICL

#
But,…what about non-monotonic learning?

Background knowledge (B) and hypothesis (H) are normal logic programs

‣ Covering loop search strategy is no longer applicable

‣ Incremental learning and generalisation techniques for  
definite programs are unsound

B =
obeys(X,Y) ← not officer(X), officer(Y)
wears_hat(price)
wears_hat(osbourne)
has_stripe(osbourne)

E+ = obeys(prince,osbourne)

M = modeh(officer(+any))
modeb(has_stripe(+any))

Hground
 = officer(osbourne) ← wears_hat(osbourne)

H = officer(X) ← wears_hat(X)

Top-Directed Abductive Leaning (TAL)
‣ Learning hypotheses using a top-down approach.
‣ Computation and generalization of hypotheses combined into a  
 single abductive-based proof procedure.

BK

IC

E

M

ILP

BK
T

G

ALP

IC’

A

Top
Theory

ΔH

- ALP is used to compute the full  
 solutions, instead of being a  
 component of a learning system

- Abductive reasoning over the  
 structure of the rules

- ILP task translated into an  
 equivalent ALP task

Top-Directed Abductive Leaning (TAL)

Algorithm: TAL

Input: Learning task <B, SM, E>
B background knowledge, E examples, SM hypothesis space

Output: H hypothesis

TM = Pre-processing(B, E, SM)

∆ = Abduce(B ∪ TM, {rule(.)}, ∅) with goal E

H = Post-processing(∆, M)

TAL: Example
B = even(0)

E = odd(s(s(s(0))))
not odd(s(s(0)))

eh: modeh(even(+nat))
oh: modeh(odd(+nat))
bno: modeb(not odd(+nat))
be: modeb(even(+nat))
bs: modeb(+nat = s(+nat))

M =

even(X) ← body([X], [(eh, [], [])])
odd(X) ← body([X], [(oh, [], [])])

body(InputSoFar, Rule) ← rule(Rule)
body(InputSoFar, Rule) ←
 not odd(X),
 link_variables([X], InputSoFar, Links),
 append(Rule, [(bno, Links,[])], NRule),
 append(InputSoFar, [], NewInputs),
 body(NewInputs, NRule).
body(InputSoFar, Rule) ←
 even(X),
 link_variables([X], InputSoFar, Links),
 append(Rule, [(be, [], Links)], NRule),
 append(InputSoFar, [], NewInputs),
 body(NewInputs, NRule).
body(Inputs, Rule) ←
 s(X) = Y,
 link_variables([X], InputSoFar, Links),
 append(Rule, [(bs, [], Links)], NRule),
 link_variables([X], Inputs, Links),
 append(InputSoFar, [], NewInputs),
 body(NewInputs, NRule).

g: odd(5),
not odd(4),
not odd(2)

odd(s(s(s(0))) 
not odd(s(s(0)))

Δ = { rule([(oh,[], []), (bs, [], [1]), (be, [], [2])]),
 rule([(eh,[], []), (bno, [], [1])] }

H = { odd(X) ←s(X) = Y, even(Y)  
 even(X) ← not odd(X) }

Top-directed abductive learning: Summary
‣ Reuse of existing abductive proof procedures,
‣ Can support definition of meta-integrity constraints on the language bias

✓Able to learn:

- normal programs (with NAF)

- non-observed concepts

- recursive and connected theories

✓ Sound and Completeness with respect to 3-valued completion semantics

Collaborators…

Krysia Broda Oliver Ray Domenico Corapi

Mark LawDalal Alrajeh Piotr Chabierski
Katsumi Inoue

Jeff KramerSebastian Uchitel Naranker Dulay

Tim Kimber

Questions?

