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Machine Learning in Al...

Advantages

© Learns from large datasets
o Very effective for single specific tasks

CREYRSN A 8
TELS'\'::‘- o

Deep heural networks learns from human Single yt:em eaches itslf to o SometlmeS better than humans

expert games and games of self-play. ..
master chess, shoji and go,
WREOEgIY) using rules of the game.

Tt IE@BEPLLHS

Drawbacks

Bounding box for
object detection

< Not able to use prior knowledge
© Not able to generalise

o Learned models are not
interpretable
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... Logic-based Learning in Al

Artificially-intelligent Robot Scientist ‘Eve’ could boost Advantages

search for new drugs

Uses prior knowledge

Able to generalise

Can support continuous learning
Learns from few examples
Learned models are interpretable

Published
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Image

Eve, the Robot Scientist

@O °\#  Inactive molecules

Learning Grammars
Training
Examples
s(0,3) + np(X,Y) <« word(“She”, X,Y) word(“She”, 0, 1)
mod(X, Y) « word(quickly, X,Y) word(quickly, 2, 3)
s(X,Y) «—np(X, Z2), vp(Z,Y) word(ran, 1, 2)
vp(X,Y) — v(X,Y) —v(1,3)

N

FARY

o” o
6-nitx2-7.8.9.10-te trahordzobenzol alovrens 4-nioindole

Learned knowledge Prior knowledge

Carcinogenicity, structural description of
organic compounds
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... Logic-based Learning in Al

Knowledge
representation

Logic-based

Learning Logic Programming

Answer Set
Programming

o Extract information from data o Declarative knowledge
o Make predictions on unseen data o Clear semantics

© Learning from past observations ¥ © Sound (and complete) inference

General-purpose machine learning algorithms
» learn from small (noisy) labelled structured data using declarative prior knowledge
» learn declarative knowledge expressed in some predicate logic formalism
- can support transfer and continuous learning
» learned models are interpretable, and guaranteed to meet semantic properties
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An Intuitive example

Learn the concept of “verb phrase” vp(Start, End) + v(Start, Middle),
| mod(Middle, End

‘oShe,ran, quickly,” e+ vp(1,3) Observation
e VIO(O,1) Predicate

e vp(0,3) Learning
BKuHE et
0, 1).
) BKUH I e
mod(2, 3).

s(X,Y)enp(X,2),vp(Z,Y)
vp(X,Y)ev(X,Y)

Background knowledge BK {

What about learning concepts that are different from the given example?

“OShe1 ran zquicklys” Non-Observation Predicate Learning
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Learning as a search problem

Logic-based learning: a computational mechanism for inducing
declarative programs from examples of what is known to be
true or false (in the models of the learned programs).

Empty hypothesis

How do we define a
learning task?

How do we search for
solutions in a given
search space?

Search space for
computing
possible solutions

Given specific examples

Imperial College
London




Learning Task: informal definition

Given

» Set of positive examples (E+) and set of negative examples (E-) In Le
» Background knowledge (B) in LB

» Set of possible solutions (Sw) in a language bias Ln

» Covers relation over Ls L1 and Le

Find
» Solution H € Sy such that:
- Covers(B,H,e) forevery eekE+ (H is complete)
- =Covers(B,H,e) forevery eek (H is consistent)

Different notions of Covers relation capture different learning frameworks.

Imperial College
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Learning Task: informal definition

Given
» Set of positive examples (E+) and set of negative examples (E-) in Le
» Background knowledge (B) in Lg
» Set of possible solutions (Sw) in a language bias Ln
» Covers relation over Lp, Ly and Le
» Quality criterion over L8, Lm and Le  scoring possible solutions

Find
» Solution H € Sm such that:
- Covers(B,H,e) forevery eek+ (H is complete)
- =Covers(B, H,e) forevery eek- (H is consistent)
- H has the highest quality.

Different notions of Covers relation capture different learning frameworks.

Imperial College

[Logical Setting for concept-learning. Luc De Raedt, AlJ 95, 187-201] London




Learning from entaillment

Isand Lu are languages for definite clausal theories

A learning from entailment task Tire is a tuple (B, Su, E+,E-) where
B is a definite clausal theory,
Swm is a set of clauses,
E+ and E- are sets of facts

Covers(B, H, e) iff BuHEe, where H C Su

A clausal theory H € Swm is an inductive solution of Tire if and only if
» Covers(B,H,e) VeekE+

» ~Covers(B, H, e) VeekFk:
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LFE: example of learning task

Consider Tire = (B, Swm, E*, E7) task given by:

—

+ =

parent(ann, tom) E daughter(eve, tom)
parent(tom, eve) =
(

parent(tom, ian)
female(ann
) Swm

(
female(mary)
female(eve) _ hs =daughter(X,Y) « parent(Y,X), female(X)

parent(ann, mary) ﬂdaughter(mary, ann) daughter(tom, ann)
E' =
daughter(eve, ann)

h1 = daughter(X,Y) « female(X)
=7 ho = daughter(X,Y) « parent(Y,X)

Bu {hi} E daughter(eve, ann) » h1 is an not an inductive solution of Tire

Bu {ho} E daughter(tom, ann) » h2 is an not an inductive solution of Tire

_—

Bu {h3} E daughter(mary, ann)
Bu {hs} E daughter(eve, tom)
— » hz is an inductive solution of T

Bu {hs} ¥ daughter(eve, ann) ’ HFE
Bu{

hs} # daughter(tom, ann) |
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Expressivity of interpretable knowledge

Early Algorithms and Systems...

Answer Set
Programs +
preferences

Answer Set
Programs
with choice

Normal Logic
Programs

Progol5
Aleph Alecto

Horn theories

Inthelex

Datalog

1995 1998 1999 2000 2001 2003 2004 2006 2008 2009 2010 2011 2014 Year

v



Expressivity of interpretable knowledge

The complexity and generality of Learning Answer Set Programs, Mark Law, Alessandra Russo, Krysia Broda, AlJ (2018).

Our recent advancement...

learning choice rules, hard

constraints and preferences

Non-monotonic

. |LA§¢Z
learning ] abductve  meta-dbcuotive >

ILASP2

\hswer Set
ograms +
dieferences

- Aswer Set
Programs
. . ; ith choice
XHail TAL/A L
Mln@’o Normal Logic
,/W Programs
Progol
Aleph Alecto
ICL  Claudien Horn theories
Inthelex
Datalog
| | | | | | | | | | | | | | | | >
[ [ [ [ [ [ [ [ [ [ [ I I [ [ [ g
1995 1998 1999 2000 2001 2003 2004 2006 2008 2009 2010 2011 2014 Year



Learning from entaillment

Definition

A LFE task Tire is a tuple (B, Sm, E*, E)) where B is a definite clausal theory, called
background knowledge, Sw is a set of clauses, called hypothesis space, E+ is a set of
facts, called positive examples, and E- is a set of facts, called negative examples.

An hypothesis H € Sw is an inductive solution of Tire if and only if
()BuHEer veteEt () BuHEe Vveek

How do we search for solutions in a given hypothesis space?

Empty hypothesis Generality Relation

Himore general then H; iff Hi = H;
¢ -covers(B, Hi, et) = —covers(B, Hj, e+)
¢ covers(B, Hj, e) = covers(B, H;, e)
¢ Higeneralises H; iff Hi 6-subsumes H;

Given specific examples Imperial College
London




Defining the hypothesis space

Language bias L is defined declaratively by mode declarations.

head declaration: modeh(s) s is a ground atom with one or more

body declaration: modeb(s) placemarkers: +t, -t, #t, where t denotes a type

modeh(grandfather(+p,+p)) grandfather(X,Y) «father(X,2),
modeb(father(+p,-p)) parent(Z,Y)

modeb(parent(+p,+p) grandfather(X,Y) « parent(X,Z), Not compatible

—

where p is type person father(Z,Y) with M

Compatible with M

Swm is the set of all clauses that are compatible with the set of mode declarations M.

Imperial College
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Searching for solutions

Empty hypothesis . e
top-down Use of efficient specialisation operators.

search > Shapiro’s refinement operators

* > Quinlan’s FOIL system

* Use of efficient generalisation operators.

bottom-up > Plotkin’s least general generalisation

Given specific examples search > Muggleton’s inverse resolution
(GOLEM, CIGOL,..))

Mixed approach:

Covering loop over the set of positive examples Progols
1.Compute most specific solution for a given example HAIL
2.Generalise the most specific clause. Imparo

Imperial College
London




Inverse entailment (IE) Approach

Mechanism for computing the most specific solution for a given example
Given a learning task Tire = (B, Swm, E*, E), and an example e+ € E+
Bu{h} et iff Bu{-et}E=-h

The negation of an hypothesis can be generated deductively from B u {—e+}.

Let —-Bot(B,e+) be the negation of the most specific clause that
covers a given examples, called Bottom Clause, denoted Bot(B,e+).

O

1. B U {_'e+}ll= _||1a A |28 Ave oA 'Ina
-Bot(B,e*)

2 -Bot(B,e*) = =h == h = Bot(B,e+)

h is derivable by Bottom Generalisation iff
h 6-subsumes Bot(B,e+) Imperial College

London




Progol

» Use Covering loop: compute an hypothesis for each seed example e+

» Mode Declarations M to constrain the computation of the Bot(B,e+)

Not able to support
corromeer | —Bot(B.e+) computed non-observation

_l_ using SLD. predicate learning

SEARCH

top-down specialisation
to compute h

! add hypothesishto B
I_remove cover fromE * |

Imperial College
London




Progold

» Use Covering loop: compute an hypothesis for each seed example e+

» Mode Declarations M to constrain the computation of the Bot(B,e+)

! selectseedec E" !
' _normalise Band e _

Compute B*, by extending B with contrapositives,
STARTSET computes negated (head) atom in

f -Bot(B*,e+) compatible with modeh

BOTTOMSET Computes (body) positive atoms in
-Bot(B,et) compatible with modeb

l Top-down specialisation to

SEARCH compute h that B-subsumes
Bot(B,e*)

! add hypothesishto B
I_remove cover from E *_|

Imperial College
London




Progold

» Use Covering loop: compute an hypothesis for each seed example e+
» Mode Declarations M to constrain the computation of the Bot(B,e+)

I normalise Bande

. selectseedec E* ! B =( p()() 4—q(X) E+ — {p(a)} E' — {p(b)}
@) M ={ modeh(g(+any)), modeb(r(+any) }

STARTSET

" " = {p*(a)}

BOTTOMSET

—

SEARCH

! add hypothesis h to B\

l
I_remove cover from E *

Imperial College
London




Incompleteness of Progold

B{a“b’c E+ = {a) (c}

b «cC

h is derivable by Bottom Generalisation but cannot be computed by Progol5

Buf-e*} = Buf-a} k~a r-c  mmmfp C € BOUBS)

h B6-subsumes Bot(B,e)

¢ ¢ STARTSET(B, e4)

Imperial College
London




Generalising Bottom Set

Theory completion by contrapositive is not sufficient to compute the
full semantics of Bottom Generalisation

Bottom Set  {lg1B U {-e*} = -lg} ={a|B U {-e*} = -a} u {-B|B U {-e} = B}

Abduction Deduction

lalBua=e)u(plBrp)

Deductive consequences

KernelSet | B 8- pi

Abductive explanation
B U {ai,...,a1} = et

Oliver Ray, Krysia Broda, Alessandra Russo. Generalised Kernel Sets for Inverse Entailment. Imperial College
ICLP 2004: 165-17. London




Hybrid abductive inductive learning (HAIL)

Consider a LFE task Tire = (B, Sm, E*, E") where B is a definite clausal theory, Sm is a
set of clauses, E+* is a set of positive examples and E- is a set of negative examples.

————» selectseede c E* | (B, Ab, |C), abductive task:
L-nomelse Bende. Ab = {h6 | modeh(h(.))}, IC possibly empty
A ={a1,...,an} € Ab

B Bifor any modeb(f(.))

H 6-subsumes K

Indystion A clausal theory H is derivable by Kernel Set
Subsumption from B and e iff
H 6-subsumes K(B,e+).

Oliver Ray, Krysia Broda, Alessandra Russo, A Hybrid Abductive Inductive Proof Procedure. Imperial College
Logic Journal of the IGPL 12(5): 371-397 (2004). London




HAIL example

ot . 'sad(ale) _ __sad(oli)
sad(X) . t|reFj(X), poor(X) E+ = sad(kb) - _(poor(oli)
academic(oli) i

aoademfc(ale) 'modeh(tired(+academic))
academic(kb) modeh(poor(+academic)
student(oli) M= modeb(lecturer(+academic)
lecturer(ale) modeb(academic (+academic))

__lecturer(kb)
tired(X)

A = {tired(ale), poor(ale)} poor(X)« lecturer(X)

1. Abduction:
3 H - (

2. Deduction:
B = {academic(ale), academic(kb), lecturer(ale), lecturer(kb)}
K. — tired(ale) «-academic(ale), lecturer(ale)
9 7 poor(ale)+academic(ale), lecturer(ale)

K — ' tired(X) «-academic(X), lecturer(X)
— | poor(X)+academic(X), lecturer(X)

Imperial College
London




Further case of iIncompleteness

Progol5 incomplete for non-Observation Predicate Learning (non-OPL)
Bottom Set incomplete with respect to multiple clause learning

Yamamoto’s example

even(0) modeb(even(+any))

B — { even(s(X)) «odd(X) M =( modeh(odd(s(+any))) F+ = {Odd(S(S(S(O))))

Can we learn the following concept H = {odd(S(X))H even(X)

Bot(B,e*) = {odd(s(s(s(0)))) « even(0)} » H not 6-subsumes Bot(B,e*)

Kg (B,e*) = {odd(s(s(s(0)))) < even(0)} —» H not 6-subsumes K(B,e")

So where is the problem?

Imperial College
London




Induction on Fallure

Yamamoto’s example

B — even(s(X)) +odd(X)
B even(0)

V| = Mmodeh(odd(s(+any))
modeb(even(+any))

+ = odd(s(s(s(0))))

?H = odd(s(X))« even(X)

Imperial College
London




Induction on Fallure

Yamamoto’s example

e=odd(s ( (s(0))))
B — even(s(X)) +odd(X) abduce
~ | even(0) T A -{odd s(s(s(0)))}
/ \ deduce

= even 0))) even(0)

M = modeh(odd(s(+any)))
modeb(even(+any)) abduce

A, ={0dd((S(0))} - T
2

deduce

even(0)

—

To={odd(s(s(s(0))) « evlen(s(s(O)), even(0)}

body atoms proved abductively

2
T, ={0dd(s(0))) « even(0) }
H T=Tyu T,
k X
0dd(s(X)) « even(X)} ' | To="{odd(s(s(s(0))) « even(s(s(0)), even(0))

T, ={ odd(s(0))) + even(0) }

(

Imperial College
London




Extending Kernel Sets to Connected Theories

T=T uT,u..uT,

"\ VBuT '=E

‘_ 1 2 k1
. B1 ’81 ,---,B1 2) B u '|'J.+|= Tj-1_ 1<j<n-1
1
\ A cen n 3) B |=Tn_

A clausal theory H is derivable by Connected Theory Generalisation
from B and e iff H 6-subsumes T

Imperial College
London




IE: semantics generalisations

Bottom Set Kernel Set Connected Theory
Progol5 Hail Imparo

B, E By C .
B, ﬁE \_ﬁe Abduce
‘ Deduce _?_,7
B 0 t(B,E) ' ‘_HDeduce .Deduce

Kernel(B,E)

H .
® H
B o

Imperial College
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But,...what about non-monotonic learning?

CF-Induction

Full Clausal Logic

Tal

Normal Logic

7 impa ro Programs

Completeness

n
[9p]
()
C
()
>
n
(9p]
9
o
x
LLl

ToplLog

Horn theories

Inthelex

1998 1999 2000 2001 2008 2009 2010
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But,...what about non-monotonic learning”?

Background knowledge (B) and hypothesis (H) are normal logic programs
» Covering loop search strategy is no longer applicable

» Incremental learning and generalisation techniques for
definite programs are unsound

obeys(X,Y) « not officer(X), officer(Y)

wears_hat(price)

wears_hat(osbourne)
(

has_stripe(osbourne)

H F)fficer(osbourne) +— wears_hat(osbourne)

ground = |

obeys(prince,osbourne)

- | H= Efficer(xy><ears_hat(x)
modeh(officer(+any))
modeb(has_stripe(+any))

Imperial College
London




op-Directed Abductive Leaning (TAL)

» Learning hypotheses using a top-down approach.

» Computation and generalization of hypotheses combined into a
single abductive-based proof procedure.

- ILP task translated into an
| equivalent ALP task

| - Abductive reasoning over the
structure of the rules

- ALP is used to compute the full
solutions, instead of being a
component of a learning system

Imperial College
London




op-Directed Abductive Leaning (TAL)

Algorithm: TAL

Input: Learning task <B, Sy, E>
B background knowledge, E examples, S, hypothesis space

Output: H hypothesis
T\ = Pre-processing(B, E, Sy)
A = Abduce(B U T, {rule(.)}, @) with goal E

H = Post-processing(A\, M)

Imperial College
London




TAL: Example

[ eh: modeh(even(+nat)) E = odd(s(s(s(0))))

' (

= oh: modeh(odd(+nat))

B= | bno: modeb(not odd(+nat)) not odd(s(s(0)))
(
(

be: modeb(even(+nat))
_bs: modeb(+nat = s(+nat)) odd(s(s(s(Q))) -

])])) not odd(s(s(0)))

body(InputSoFar, Rule) « rule(Rule) A ), (bs, [, [1]), (e, [], [2])]),
body(InputSoFar, Rule) « ), (lono, [], [1])] }

not odd(X),

link_variables([X], InputSoFar, Links),

append(Rule, [(bno, Links,[ ])], NRule),

append(InputSoFar, [ ], Newlnputs), _
body(NewlInputs, NRule). { odd(X) «s(X) =, even(Y)

body(InputSoFar, Rule) « even(X) « not odd(X) }
even(X),
link_variables([X], InputSoFar, Links),
append(Rule, [(be, [ ], Links)], NRule),
append(InputSoFar, [ ], Newlnputs),
body(Newlnputs, NRule).
body(Inputs, Rule) «
s(X) =Y,
link_variables([X], InputSoFar, Links),
append(Rule, [(bs, [ ], Links)], NRule),
link_variables([X], Inputs, Links),
append(InputSoFar, [ ], Newlnputs),

body(Newlnputs, NRule). Imperial College
London

[ even(X) « body( [X], [(eh, [], ]
odd(X) « body([X], [(oh, [1, [])




Top-directed abductive learning: Summary

» Reuse of existing abductive proof procedures,

» Can support definition of meta-integrity constraints on the language bias

Y Able to learn:
- normal programs (with NAF)
- non-observed concepts

- recursive and connected theories

v Sound and Completeness with respect to 3-valued completion semantics

Imperial College
London
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Questions?
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