
Sebastian Rudolph

Explaining Data with
Formal Concept Analysis

Sebastian Rudolph
Computational
Logic ∴ Group



Formal Concept Analysis?

¨ Branch of Applied Mathematics
¨ Based on Lattice Theory developed by

Garrett Birkhoff and others in the 1930s
¨ Employs algebra in order to formalize

notions of concept and conceptual
hierarchy

¨ Term Formal Concept Analysis (short: 
FCA) introduced by Rudolf Wille in the
1980s.
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Why Formal Concept Analysis?

¨ The method of Formal Concept Analysis offers an 
algebraic approach to data analysis and knowledge
processing.

¨ Strengths of FCA are
¤ … a solid mathematical and philosophical foundation,
¤ … more than 1000 research publications,
¤ … experience of several hundred application projects,
¤ … an expressive and intuitive graphical representation,
¤ and a good algorithmic basis.

¨ Due to its elementary yet powerful formal theory, FCA can
express other methods, and therefore has the potential to 
unify the methodology of data analysis. 
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FCA – Further Information 

¨ Conferences
¤ International Conference on Formal Concept Analysis (ICFCA)

¤ International Conference on Conceptual Structures (ICCS)

¤ Concept Lattices and Applications (CLA)

¨ Monograph
¤ Bernhard Ganter & Rudolf Wille. 

„Formal Concept Analysis. Mathematical Foundations“ 

Springer Verlag, 1999

¨ FCA Website by Uta Priss: 
http://www.upriss.org.uk/fca/fca.html
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FOUNDATIONS OF FORMAL 
CONCEPT ANALYSIS

Sebastian Rudolph20.09.2019
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Introduction

¨ Formal Concept Analysis (FCA) is a…
¤ “mathematization” of the philosophical 

understanding of concepts
¤ human-centered method to structure and    
analyze data

¤method to visualize data and its inherent 
structures, implications and dependencies
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What is a Concept?

¤ Consider the concept “bird”. What drives us to call 
something a “bird” ?

l Every object with certain attributes is called “bird”:
u A bird has feathers.
u A bird has two legs.
u A bird has a bill. …

l All objects having these attributes are called “birds”:
u Duck, goose, owl and parrot are birds.
u Penguins are birds, too.
u …
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What is a Concept?

¨ This description of the concept “bird” is based 
on sets of 

objects     related to    attributes.
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duck
goose
parrot
...

has bill
has feathers
has two legs
...

Objects, attributes and a relation 
form a formal concept.



What is a Concept?

¨ So, a formal concept is constituted by two parts

¨ ... having a certain relation:
¤ every object belonging to this concept has all the

attributes in B
¤ every attribute belonging to this concept is shared by all

objects in A
¨ A is called the concept's extent, 

B is called the concept's intent
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A: a set of objects B: a set of attributes



The Universe of Discourse

¨ A repertoire of objects and attributes (which might
or might not be related) constitutes the „context“ of 
our considerations.
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has bill
has feathers
has two legs
...



The Formal Context

small medium big 2legs 4legs feathers hair fly hunt run swim mane hooves

dove x x x x

hen x x x

duck x x x x x

goose x x x x x

owl x x x x x

hawk x x x x x

eagle x x x x x

fox x x x x x

dog x x x x

wolf x x x x x x

cat x x x x x

tiger x x x x x

lion x x x x x x

horse x x x x x x

zebra x x x x x x

cow x x x x
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set of objects (G)

set of attributes (M)

(G,M,I) is called
formal context

crosses indicate incidence
relation (I) between G and M

I µ G £ M
for g2G and m 2M, (g,m) 2 I
means object g has attribute m

K



Definition of Formal Concepts

¨ For the mathematical definition of formal concepts we
introduce the derivation operator “'”. 

For a set of objects A, A' is defined as:

A' = {all attributes in M common to the objects of A}
= { m 2 M | 8 g 2 A : (g,m) 2 I}

For a set of attributes B, B' is defined as:

B' = {objects in G having all attributes of B}
= { g 2 G | 8m 2 B : (g,m) 2 I}
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Applying the Derivation Operator

small medium big 2legs 4legs feathers hair fly hunt run swim mane hooves

dove x x x x

hen x x x

duck x x x x x

goose x x x x x

owl x x x x x

hawk x x x x x

eagle x x x x x

fox x x x x x

dog x x x x

wolf x x x x x x

cat x x x x x

tiger x x x x x

lion x x x x x x

horse x x x x x x

zebra x x x x x x

cow x x x x
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Applying the Derivation Operator
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Properties of the Derivation Operator

¨ X µ Y ) Y' µ X'
The more objects we consider, the fewer attributes they have in 
common.
The more attributes we require, the fewer objects we find 
having all of them.

¨ X µ X''
¨ X' = X'''
¨ therefore, '' is a closure operator (on G or M):

¤ monotone: X µ Y ) X'' µ Y''

¤ extensive: X µ X''

¤ idempotent: (X'')'' = X''
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Definition of Formal Concepts

¨ We are looking for pairs (A,B) of objects A and
attributes B that satisfy the conditions

A' = B and B' = A
and we call these pairs formal concepts.

¨ Alternative, equivalent definition:
¤ A£B µ I  (i.e., (g,m) 2 I for all g2A and m2 B) and

¤ A and B are subset-maximal with that property.

¨ In words: maximal cross-filled rectangles in the
context (possibly after swopping rows and columns). 
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Calculating Formal Concepts

¨ Using the derivation operator we can derive formal 
concepts from our formal context with the following
procedure:

¤Pick an object set A.
¤Derive the attributes A'.
¤Derive (A')'.
¤ (A'',A') is a formal concept.

¨ The same routine could be applied starting with an 
attribute set B: (B',B'') is a formal concept as well.
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Calculating Formal Concepts

small medium big 2legs 4legs feathers hair fly hunt run swim mane hooves

dove x x x x

hen x x x

duck x x x x x

goose x x x x x

owl x x x x x

hawk x x x x x

eagle x x x x x

fox x x x x x

dog x x x x

wolf x x x x x x

cat x x x x x

tiger x x x x x

lion x x x x x x

horse x x x x x x

zebra x x x x x x

cow x x x x
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1. Pick a set of objects:  A = {duck}
2. Derive attributes:      A‘ = {small, 2legs, feathers, fly, swim}
3. Derive objects:       (A‘)‘ = {small, 2legs, feathers, fly, swim}‘ = {duck, goose}
4. Formal concept:  (A‘‘,A‘) = ({duck, goose}, {small, 2legs, feathers, fly, swim})

K



Ordering Concepts
21

Consider another formal concept (B',B'')=({duck, goose, dove, owl, 
hawk},{small, 2legs, feathers, fly}). 

The formal concept (B',B'') is a superconcept of (A'',A') and (A'',A') 
is a subconcept of (B',B''), because A'' is a subset of B'.
So (B',B'') is drawn above (A'',A') and connected to it by a line.

The formal concept (A'',A')=({duck, goose}, {small, 2legs, feathers, 
fly, swim}) is represented in the line diagram as a node: 

B’={duck, goose, dove, owl, hawk}

B’’={small, 2legs, feathers, fly}

A’’={duck, goose}

A’={small, 2legs, feathers, fly, swim}



Ordering Concepts
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We extend the diagram by adding more formal concepts
({owl, hawk}, {feathers, 2legs, small, fly, hunt})
({owl, hawk, eagle}, {feathers, 2legs, fly, hunt})

... and subconcept relations:

Several methods exist to derive all formal concepts:
Cut over extents, Ganter's algorithm etc.

... and so on.

{duck, goose, dove, owl, hawk}
{small, 2legs, feathers, fly}

{duck, goose}
{small, 2legs, feathers, fly, swim}

{owl, hawk, eagle}
{hunt, 2legs, feathers, fly}

{owl, hawk}
{small, hunt, 2legs, feathers, fly}



The Concept Lattice

¨ The subconcept–superconcept relation defines an order 6 on 
the set B of all formal concepts of a formal context

¨ For two concepts (A1,A2) and (B1,B2), this order is defined by: 
(A1,A2) 6 (B1,B2) , A1 µ B1 (, B2 µ A2)

¨ (A1,A2) is smaller than (B1,B2) if A1 is subset of B1 (objects) and 
B2 is subset of A2 (attributes). Hence, (B,6) is an ordered set.

¨ The set B of formal concepts has another property:
l For each family of formal concepts of a formal context

there exists always a unique greatest subconcept and a 
unique smallest superconcept.

l The ordered set B=(B,6) plus the last property forms a 
mathematical structure: the concept lattice.
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Concept Lattice – Formal Concepts
24

{duck, goose, dove, owl, hawk}

{small, 2legs, feathers, fly}

{duck, goose}

{small, swim, 2legs, feathers, fly}

{duck, goose, dove, owl, hawk, eagle}

{2legs, feathers, fly}

{eagle}

{medium, hunt, 2legs, feathers, fly}

„small
swimming

birds“

„medium 
hunting
birds“

„small
flying
birds“

„flying
birds“



Concept Lattice – Top and Bottom
25

all attributes
no objects

no attributes
all objects

more general
concepts more specific

concepts
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Concept Lattice – Implications

26
{hair, 4legs, medium} ! {run}

{fly} ! {feathers, 2legs}

How to determine all the implications for a given lattice or context?

{hooves} ! {big, 4legs, hair}
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Computing the Concept Lattice

¨ How to compute all formal concepts?
¨ Variant 1: brute-force enumeration

Computing All Concepts: Naive Approach

Theorem

Each concept of a context pG,M, Iq has the form pX2, X 1q for some
subset X Ñ G and pY 1, Y 2q for some subset Y Ñ M .
Conversely, all such pairs are concepts.

Algorithm

Determine for every subset Y of M the pair pY 1, Y 2q.

Ine�cient! (Too) many concepts are generated multiple times.

Sebastian Rudolph (TUD) Formal Concept Analysis 20 / 42
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Computing the Concept Lattice

¨ How to compute all formal concepts?
¨ Variant 2: intersection method

Computing All Concepts: Intersection Method

Suitable for manual computation (Wille 1982)

Best worst-case time complexity (Nourine, Raynoud 1999)

Based on the following

Theorem

Every extent is the intersection of attribute extents. (I.e., the closure
system of all extents is generated by the attribute extents.)

Which intersections of attribute extents should we take?

Sebastian Rudolph (TUD) Formal Concept Analysis 21 / 42
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Computing the Concept Lattice

¨ How to compute all formal concepts?
¨ Variant 2: intersection method

Computing All Concepts: Intersection Method

How to determine all formal concepts of a formal context:

1 For each attribute m P M compute the attribute extent tmu1.
2 For any two sets in this list, compute their intersection. If it is not yet

contained in the list, add it.

3 Repeat until no new extents are generated.

4 If G is not yet contained in the list, add it.

5 For every extent A in the list compute the corresponding intent A1.

Sebastian Rudolph (TUD) Formal Concept Analysis 22 / 42
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Computing the Concept Lattice

¨ How to compute all formal concepts?
¨ Variant 2: intersection method

Computing All Concepts: Intersection Method

On the blackboard: “triangle” example

Triangles

abbreviation coordinates diagram
T1 (0,0) (6,0) (3,1)

T2 (0,0) (1,0) (1,1)

T3 (0,0) (4,0) (1,2)

T4 (0,0) (2,0) (1,
p
3)

T5 (0,0) (2,0) (5,1)

T6 (0,0) (2,0) (1,3)
T7 (0,0) (2,0) (0,1)

Attributes

symbol property
a equilateral
b isoceles
c acute angled
d obtuse angled
e right angled

a b c d e

T1 ⇥ ⇥
T2 ⇥ ⇥
T3 ⇥
T4 ⇥ ⇥ ⇥
T5 ⇥
T6 ⇥ ⇥
T7 ⇥

Sebastian Rudolph (TUD) Formal Concept Analysis 23 / 42
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Drawing the Concept Lattice

¨ Given a list of concepts, how to manually draw the
lattice diagram?

Drawing Concept Lattices

How to draw a concept lattice by hand:

1 Draw a small circle for the extent G at the top.

2 For every extent (starting with the one’s with the most elements)
draw a small circle and connect it with the lowest circle(s) whose
extent contains the current extent.

3 Every attribute is written slightly above the circle of its attribute
extent.

4 Every object is written slightly below the circle that is exactly below
the circles that are labeled with the attributes of the object.

Sebastian Rudolph (TUD) Formal Concept Analysis 24 / 42
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Drawing the Concept Lattice

¨ Given a formal context and a drawn concept lattice
diagram, how to check the latter is correct?

Concept Lattice: The Basic Theorem on Concept Lattices

Theorem

The concept lattice BpG,M, Iq is a complete lattice in which infimum and
supremum are given by
©

tPT
pAt, Btq “

˜
£

tPT
At,

˜
§

tPT
Bt

2̧¸
and

™

tPT
pAt, Btq “

˜˜
§

tPT
At

2̧
,

£

tPT
Bt

¸

A complete lattice pV,§q is isomorphic to BpG,M, Iq if and only if there
are mappings �̃ : G Ñ V and µ̃ : M Ñ V such that

�̃pGq is supremum-dense in pV,§q,
µ̃pMq is infimum-dense in pV,§q, and
gIm is equivalent to �̃pgq § µ̃pmq for all g P G and all m P M .

In particular, pV,§q – BpV, V,§q.

Sebastian Rudolph (TUD) Formal Concept Analysis 17 / 42
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Drawing the Concept Lattice

¨ Given a formal context and a drawn concept lattice
diagram, how to check the latter is correct?
Drawing Concept Lattices

How you can check the drawn diagram:

1 Is it really a lattice? (that’s often skipped)

2
Is every concept with exactly one upper neighbor
labeled with at least one attribute?

3
Is every concept with exactly one lower neighbor
labeled with at least one object?

4

Is for every g P G and m P M the label of the
object g below the label of the attribute m i↵
pg,mq P I holds?

Sebastian Rudolph (TUD) Formal Concept Analysis 25 / 42



Summary

¨ Formal contexts
¤ Objects, attributes and incidence relation

¨ … and formal concepts
¤ Extent and intent
¤ Subconcept relations

¨ Concept lattices
¤ How to interpret a concept lattice
¤ Generalization and specialization
¤ Implications

¨ How to draw and verify concept lattices
¨ Next: implications and attribute exploration

34



IMPLICATIONS AND
ATTRIBUTE EXPLORATION

Sebastian Rudolph20.09.2019
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Attribute Implications
(aka propositional Horn clauses)

¨ For A,B µ M, the implication A ! B holds in K, if
every object having all attributes from A also has 
all attributes from B.

¨ Formally: A µ {g}' implies B µ {g}' for all g 2 G

¨ Examples:
¤ {wet} ! {fluid}
¤ {fluid, dry} ! {warm}
¤ {dry, wet} ! {cold}    (!)
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How to „Datamine“ Implications?

¨ We want to extract the „implicational“ knowledge
from a formal context.

¨ Very naive approach: enumerate all (22|M|) 
implications and check against context.
¤ Takes way too long.
¤ Generated implication set is extremely redundant.

¨ Examples:
¤ {fluid, dry} ! {fluid}
¤ {wet} ! {fluid} vs. 

{wet, cold} ! {fluid}
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How to „Datamine“ Implications?

¨ Observations: 
¤ For any attribute set A, the implication A ! A'' holds in K
¤ If A ! B holds in K then B µ A''

¨ Hence the implications of the form A ! A'' provide
enough information about all implications of the context.

¨ Still rather naive approach: enumerate all (2|M|) 
attribute sets A and generate implication A ! A''
¤ Still takes way too long
¤ Generated implication set is still extremely redundant

38



What does Redundancy Mean?

¨ Boils down to question of logical entailment of
implications: When does an implication A!B follow 
from a set = of implications?

¨ Two equivalent definitions:
¤ Semantically: A!B holds in every formal context

wherein every implication from = holds.
¤ Syntactically: A!B can be derived from = using the

three Armstrong Rules:  

39

X ! X

X ! Y

X [ Z ! Y

X ! Y       Y [ Z ! W

X [ Z ! W



Implication Bases

¨ Given a formal context K, a set of implications = is
called implication base of K, if ...
¤ every implication A ! B from = holds in K,
¤ every implication A ! B holding in K can be derived

from =, and
¤ none of the implications from = can be derived from

the other implications contained in =

¨ Question: which A ! A'' to choose to make up an 
implication base?

40



The Stem Base

¨ Question: which A ! A'' to choose to make up an 
implication base?

¨ Answer: take all the pseudo-intents of K.

¨ Attribute set P is called pseudo-intent, if
¤ P is not an intent (i.e. P ≠ P''), but
¤ if P contains another pseudo-intent Q, then it also 

contains Q''

¨ Definition recursive (but OK at least for finite M)
¨ Set {P ! P''| P pseudo-intent} is called stem base

41



How to Compute the Stem Base

¨ We order attributes in a row:
¤ e.g. a,b,c,d,e,f

¨ Based on that order, attribute sets are encoded as bit-vectors of 
length |M|
¤ e.g. {a,c,d}  becomes [1,0,1,1,0,0]

¨ Implications are pairs of bit-vectors
¤ e.g. {a} ! {a,e,f}  becomes ([1,0,0,0,0,0], [1,0,0,0,1,1])

¨ Implications can be „applied“ to attribute sets
¤ ({a} ! {a,e,f}) applied to {a,c,d} yields {a,c,d,e,f}

([1,0,0,0,0,0], [1,0,0,0,1,1]) [1,0,1,1,0,0] = [1,0,1,1,1,1]
¨ Implication sets can be applied to attribute sets:

¤ {{b,d}!{c},{a}!{d}} applied to {a,b} yields {a,b,c,d}
¤ write =(A) for the result of applying implication set = to attribute set A

¨ A+i defined as: take A, set ith bit to 1 and all subsequent bits to 0
¤ e.g. [0,1,0,0,1,1]+3 = [0,1,1,0,0,0]

42



How to Compute the Stem Base

¨ Input formal context K
¨ Create list = of implications, initially empty

Let A = [0,0,...,0]     (bit representation of empty set)
¨ Repeat

¤ Add A ! A'' to = in case A ≠ A''
¤ Starting from i = |M|+1, decrement i until

n i=0 or
n The ith bit of A is 0 and 

applying = to A+i produces 1s only at positions greater than i
¤ If i=0 output = and exit
¤ Let A = =(A+i)

43

... i ...        
A: [0,0,1,0,1,1,0]

A+i: [0,0,1,1,0,0,0]
=(A+i): [0,0,1,1,0,1,1]



Interactive Knowledge Acquisition
via Attribute Exploration

¨ Sometimes, K is not entirely known from the
beginning, but implicitly present as an expert‘s
knowledge

¨ Attribute exploration determines the stembase of K
by asking expert for missing information
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Interactive Knowledge Acquisition
via Attribute Exploration

¨ Sometimes, K is not entirely known from the
beginning, but implicitly present as an expert‘s
knowledge

¨ Attribute exploration determines the stembase of K
by asking expert for missing information
¤ M known and fixed
¤ H µ G objects that are known in advance

(as well as their attributes)

¨ Idea: use stembase algorithm on incomplete context
which is updated on the fly

45



Stem Base Algorithm Revisited

¨ Input formal context K=(H,M,J) where J=(H£M)\I
¨ Create list = of implications, initially empty

Let A = [0,0,...,0]     (bit representation of empty set)
¨ Repeat

¤ Add A ! A'' to = in case A ≠ A''
¤ Starting from i = |M|+1, decrement i until

n i=0 or
n The ith bit of A is 0 and 

applying = to A+i produces 1s only at positions greater than i
¤ If i=0 output = and exit
¤ Let A = =(A+i)

46

Has to be altered, because
implication valid in K might
be invalid in K since refuted
by an object not yet recorded. 
Then augmenting K by this
object allows to refine the
hypothesis.



Making It Interactive...

¨ Instead of just adding A ! A'' to =, do the following control
loop:
¤ While A ≠ A''

n Ask expert whether A ! A'' is valid in K
n If yes, add A ! A'' to = and exit while-loop,

otherwise ask for counterexample and add it to K

¨ What is a counterexample for A ! A''?
¤ An object having all attributes from A but missing some from A'' 

¨ How to add a counterexample g to K=(H,M,J)?
¤ Hnew = H [ {g}
¤ Jnew = J [ {(g,m) | m is attribute of g in K}
¤ Essentially: just add a line to the cross table

47



Making It Interactive...

¨ Instead of just adding A ! A'' to =, do the following control
loop:
¤ While A ≠ A'‚

n Ask expert whether A ! A'' is valid in K
n If yes, add A ! A'' to = and exit while-loop,

otherwise ask for counterexample g and add it to K

¨ Remarks: 
¤ Attribute set of g has to comply with the implications already confirmed
¤ Changing K changes the operator (.)''

¤ It is not obvious (but has to be proven) that this indeed works, i.e. the
enumeration done beforehand is not corrupted by updating the context

48



Stem Base Algorithm Revisited

¨ Input formal context K
¨ Create list = of implications, initially empty

Let A = [0,0,...,0]     (bit representation of empty set)
¨ Repeat

¤ While A ≠ A'‚
n Ask expert whether A ! A'' is valid in K
n If yes, add A ! A'' to = and exit while-loop,

otherwise ask for counterexample g and add it to K
¤ Starting from i = |M|+1, decrement i until

n i=0 or
n The ith bit of A is 0 and 

applying = to A+i produces 1s only at positions greater than i
¤ If i=0 output = and exit
¤ Let A = =(A+i)
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A Tiny Example: the Four Elements 
50
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Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [0, 0, 0, 0, 0]
A'': [0, 0, 0, 0, 1]

{} ! {cold}?
(are all elements cold?)



A Tiny Example: the Four Elements 
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Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [0, 0, 0, 0, 0]
A'': [0, 0, 0, 0, 1]

{} ! {cold}?
(are all elements cold?)

no: air is not cold!



A Tiny Example: the Four Elements 
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A Tiny Example: the Four Elements 
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A: [0, 0, 0, 1, 0]
A'': [1, 0, 1, 1, 0]

{warm} ! {wet,fluid}?
K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [0, 0, 0, 1, 0]
A'': [1, 0, 1, 1, 0]

{warm} ! {wet,fluid}?

no: fire is warm but not wet!
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [0, 0, 0, 1, 0]
A'': [1, 0, 0, 1, 0]

{warm} ! {fluid}?
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [0, 0, 0, 1, 0]
A'': [1, 0, 0, 1, 0]

{warm} ! {fluid}?

yes!

[0,0,0,1,0]![1,0,0,1,0] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [0, 0, 1, 0, 0]
A'': [1, 0, 1, 0, 0]

{wet} ! {fluid}?

yes!

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [0, 1, 0, 0, 0]
A'': [0, 1, 0, 0, 0]

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [0, 1, 0, 0, 1]
A'': [0, 1, 0, 0, 1]

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 0, 0, 0, 0]
A'': [1, 0, 0, 0, 0]

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 0, 0, 0, 1]
A'': [1, 0, 1, 0, 1]

{fluid,cold} ! {wet}?

yes!

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 

[1,0,0,0,1]![1,0,1,0,1] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 0, 0, 1, 0]
A'': [1, 0, 0, 1, 0]

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 

[1,0,0,0,1]![1,0,1,0,1] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 0, 1, 0, 0]
A'': [1, 0, 1, 0, 0]

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 

[1,0,0,0,1]![1,0,1,0,1] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 0, 1, 0, 1]
A'': [1, 0, 1, 0, 1]

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 

[1,0,0,0,1]![1,0,1,0,1] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 0, 1, 1, 0]
A'': [1, 0, 1, 1, 0]

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 

[1,0,0,0,1]![1,0,1,0,1] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 0, 1, 1, 1]
A'': [1, 1, 1, 1, 1]

{fluid,wet,warm,cold} 
! everything?

yes!

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 

[1,0,0,0,1]![1,0,1,0,1] 

[1,0,1,1,1]![1,1,1,1,1] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 1, 0, 0, 0]
A'': [1, 1, 0, 1, 0]

{fluid,dry} ! {warm}?

yes!

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 

[1,0,0,0,1]![1,0,1,0,1] 

[1,0,1,1,1]![1,1,1,1,1] 

[1,1,0,0,0]![1,1,0,1,0] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 1, 0, 1, 0]
A'': [1, 1, 0, 1, 0]

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 

[1,0,0,0,1]![1,0,1,0,1] 

[1,0,1,1,1]![1,1,1,1,1] 

[1,1,0,0,0]![1,1,0,1,0] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 1, 0, 1, 1]
A'': [1, 1, 1, 1, 1]

{fluid,dry,warm,cold} 
! everything?

yes!

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 

[1,0,0,0,1]![1,0,1,0,1] 

[1,0,1,1,1]![1,1,1,1,1] 

[1,1,0,0,0]![1,1,0,1,0] 
[1,1,0,1,1]![1,1,1,1,1] 
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K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 1, 1, 1, 0]
A'': [1, 1, 1, 1, 1]

{fluid,dry,wet,warm} 
! everything?

yes!

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 

[1,0,0,0,1]![1,0,1,0,1] 

[1,0,1,1,1]![1,1,1,1,1] 

[1,1,0,0,0]![1,1,0,1,0] 
[1,1,0,1,1]![1,1,1,1,1] 

[1,1,1,1,0]![1,1,1,1,1] 



A Tiny Example: the Four Elements 
72

K

flu
id

dr
y

w
et

w
ar

m

co
ld

Earth £ £

Water £ £ £

Air £ £ £

Fire £ £ £

A: [1, 1, 1, 1, 1]
i=0 à terminate

[0,0,0,1,0]![1,0,0,1,0] 

[0,0,1,0,0]![1,0,1,0,0] 

[1,0,0,0,1]![1,0,1,0,1] 

[1,0,1,1,1]![1,1,1,1,1] 

[1,1,0,0,0]![1,1,0,1,0] 
[1,1,0,1,1]![1,1,1,1,1] 

[1,1,1,1,0]![1,1,1,1,1] 



Extensions of Classical Attribute Exploration

¨ Allow for a-priori implications
¤ Notion of relative stem base (Stumme 1996)

¨ Allow for arbitrary propositional background
knowledge
¤ Notion of frame context (Ganter 1999) 

¨ Allow for partial description of objects
¤ Notion of partial context (Burmeister, Holzer 2005)

¨ Allow for complete exploration of non-propositional
logics
¤ Horn logic with bounded variables: rule exploration

(Zickwolff 1991)
¤ DLs with bounded role depth: relational exploration

(Rudolph 2004)
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