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Quality AI Systems

• What kind of AI systems are we building?

• What kind of AI systems do we want to build?

• Three pillars to understand and produce quality AI systems:

– Bias

– Transparency

– Explicability



Quality AI Systems

• What kind of software systems are we building?

• What kind of software systems do we want to build?

• Three pillars to understand and produce quality software 

systems:

– Bias

– Transparency

– Explicability



Quality AI Systems

• Bias: judgment based on preconceived notions or 

prejudices.

– In the data, in the model, in the algorithms…

– Data used to train systems may come from biased/non-

representative samples (collection, human labelling, etc.)

– Function-based systems learn patterns from our data, they 

may perpetuate inherent cultural bias. 

– Knowledge-based models may also carry out bias…

– “Good” (e.g., coming from expertise) bias vs “bad” bias.



Quality AI Systems

• Transparency

– Auditable systems  norms/standards that guarantee 

levels of “quality”.

– Make sure the reasoning/computational process makes 

decisions that can be traced back.

– Clear assignments of responsibilities.



Quality AI Systems

• Explicability 

– Many AI systems are simply black-boxes.

– Interpretability is not enough: the extent to which you can 

predict a model’s result without necessarily trying to 

understand why or how.

– Most systems (even those based on explicit knowledge 

like symbolic AI) are not designed to be questioned about 

the decisions they make or how the reasoning process 

works.



Explanations…Why?

• Explicability 

– Provide some level of transparency (some internal 

aspects of the system are exposed)

– To ensure algorithmic fairness 

– Identify potential bias/problems in the training data or 

model

– To ensure that the algorithms perform as expected

– Human-computer interaction: explanations may help in 

building trust



Explanations… What?
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Explanations… What?

• The notion of explanation, and the related notions of 

explainability and interpretability, have been studied for 

quite some time in philosophy and related disciplines in the 

social sciences [MILLER2019].

• Explanations are usually consumed by humans:

– A (human) user would like to know why a certain weather 

forecast is likely to be true.

– A (human) user would like the bank employee to explain why 

they are being denied a loan at the bank.
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Explanations… How? 

• What is the form of an explanation in the setting of a 

(intelligent) computational system?

• What is a good or adequate explanation in this setting?

• In general terms, we can´t know… it depends on many 

aspects:

– The type of system and results: analysis, decision making, 

actions over the real world.

– Type of audience: does the user know the system´s 

mechanics or is it used as a black box? What purpose does 

the explanation serve for the user? Is the system audited?
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Explanations for Decision Making

• In general terms, explanations for conclusions from a 

reasoning system are typically aimed to:

– Clarify: ensure the user that the reasoning process is correct. 

– Teach: transfer the knowledge of a certain mechanism so the 

user can replicate the reasoning process in other situations 

and contexts. 

– Persuade: convince the user that the conclusion returned is 

the best in the presence of all valid possibilities.
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Static vs Dynamic Explanations

• Static explanations [MOULIN2002,Southwick91]: all the 

necessary knowledge for the explanation is available from 

the beginning. 

– The explanation is made by means of a knowledge 

structure that justifies the conclusion. 

– More evidence can be provided about how the reasoning 

process works to explain intermediate conclusions.

• This type of explanations are called fixed or based on 

justifications (e.g., [Falappa2002,Garcia2013]).
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Static vs Dynamic Explanations

• Dynamic explanations: they are based on both the 

knowledge within the system and the knowledge from the 

user.

– The user can ask for additional information and question 

the reasoning process itself.

– This can be done by means of questions that guide the 

explanation itself.

• This type of explanations involve an interactive mechanism, 

usually based on some kind of controlled dialogue.
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This talk today…

Two knowledge-based frameworks to handle uncertainty (in 

Datalog+/- ontologies):

• Probabilistic reasoning

• Inconsistency-tolerant semantics for query answering

• How can we use the knowledge contained in the models to 

explain their behavior and results?
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Uncertainty

• Uncertainty appears everywhere in the Web:

– Inherent uncertainty: inherent to a particular domain (e.g, 

weather forecast)

– Uncertainty coming from automatic processing of data (e.g., 

automatic integration of schemas or datasets)

– Uncertainty coming form the presence of inconsistency and 

incompleteness

• At the moment, browsers and other Web technologies do 

not manage uncertainty in a principled way.
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Uncertainty

• Goal: fill the gap by developing of tools that can be applied 

to perform different tasks in the Web; for instance, in 

semantic search.

• One way to do this is by integrating ontology languages with  

databases technologies and probabilistic models.

• In this class we will cover:

– Some probabilistic models that can be useful to model Web content.

– Algorithms for query answering: classic (exact probability), threshold, 

and ranking.

– Scalable but expressive fragments of the language/model.
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Example

• Consider the problem of entity extraction over the following 

text snippet:
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Probabilistic Models

• Probabilistic Graphical Models (PGMs) are graph-based 

structures that are use to represent knowledge about a 

uncertain domain.

• Representation:

– Nodes: random variables

– Arcs: probabilistic dependencies among variables; if there is 

no arc between two variables then it means that the variables 

are conditionally independent.
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Probabilistic Models

Some well known and used types of PGMs:

– Bayes Nets (BNs)

– Markov Networks / Markov Random Fields (MRFs)

– Markov Logic Networks (MLNs)

– Markov Chains (MCs)

– ….
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Probabilistic Models

Some well known and used types of PGMs:

– Bayes Nets (BNs)

– Markov Networks / Markov Random Fields (MRFs)

– Markov Logic Networks (MLNs)

– Markov Chains (MCs)

– ….
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Probabilistic Models:

Markov Networks



Markov Networks (MRFs)

A Markov Network (or Markov Random Field, MRF) is a non 

directed graph where:

• every node represents a discrete random variable;

• arcs correspond to a notion of direct probabilistic interaction; this 

interaction is parameterized with potential functions (there is a 

potential function for every maximal clique);

• potentials: non-negative real functions over the variables in each 

clique (the state of the clique);

• a node is conditionally independent from the rest of the nodes in 

the graph given the values of its immediate neighbors (the 

Markov blanket of the node).
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Example

Variables:

• Sunny (the day is sunny)

• Hot (the day is hot)

• Beach (we go to the beach)

• Walk (we go for a walk)
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Markov Networks (MRFs)

The joint distribution of variables 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} can be 

defined as follows:

𝑃 𝑋 = 𝑥 =
1

𝑍
ෑ

𝑖

𝑖 𝑥 𝑖

where 𝑖 is the potential function and 𝑥𝑖 is the state of the 𝑖-th

maximal clique.

𝑍 is a normalizing constant so the sum of all probabilities adds 

up to 1:

𝑍 = ෍

𝑥∈𝑋

ෑ

𝑖

𝑖(𝑥{𝑖})
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Example

We can calculate the probability that it is sunny and hot, and 

that we go to the beach but don’t take a walk:

𝑃 𝑠  ℎ  𝑏  𝑤 =
1

𝑍
2 × 3 × 1.7 =

10.2

𝑍

25



Markov Networks (MRFs)

• Problem: expressing a value for each state of each clique is 

exponential in the size of the model.

• We can obtain a more compact representation by means of 

functions called features.

• For instance, the log-linear model defines:

𝑃 𝑋 = 𝑥 =
1

𝑍
𝑒σ𝑖𝑤𝑖𝑓𝑖(𝑥)

where the i vary over the set of cliques:

𝑍 = ෍

𝑥∈𝑋

𝑒σ𝑖𝑤𝑖𝑓𝑖(𝑥)
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Markov Networks (MRFs)

• Features 𝑓𝑖(𝑥) (also real functions of the state) replace the 

potentials.

• Each 𝑓𝑖(𝑥) has associated a weight 𝑤𝑖

• Here we consider binary features: 𝑓𝑖 𝑥 ∈ 0,1. 

• The more direct translation from the previous form to this 

one is:

a feature corresponding to each possible state 𝑥{𝑖}

of each clique, with weight ln 𝑖(𝑥{𝑖}).
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Example

Coming back to our running example, we can define a simple 

feature for the clique Sunny, Walk in the following way:
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Probabilistic Models:

Markov Logic Networks

(or Markov Logic)



Markov Logic Networks (MLNs)

An MLN is a finite set of pairs (𝐹𝑖 , 𝑤𝑖), where:

• 𝐹𝑖 is a formula in FOL

• 𝑤𝑖 is a real number (the weight of the formula)

Together with a finite set of constants 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛, it defines 

an MRF 𝑀𝐿,𝐶 in the following way:

• 𝑀𝐿,𝐶 contains a binary node for every possible basic instance of 

an atom in 𝐿. The value of the node is 1 if the atom is true, and 0 

otherwise.

• 𝑀𝐿,𝐶 contains a feature for each basic instance of formulas 𝐹𝑖 in 𝐿. 

The value of the feature is 1 if the formula is true, or 0 otherwise, 

the weight is the value 𝑤𝑖 associated with 𝐹𝑖 in 𝐿. 
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Markov Logic Networks (MLNs)

Observations:

• Basic atoms generate the node in the network.

• There is an arc between two nodes if and only if the basic 

atoms appear together in at least one basic instance of a 

formula in 𝐿.

• The formulas generate cliques in the network.
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Example

• Consider the MLN defined by the pairs:

– (∀𝑥 𝑆𝑚 𝑥  𝐶𝑎 𝑥 , 1.5) Smoking causes cancer

– (∀𝑥 ∀𝑦 𝐹𝑟 𝑥, 𝑦  𝑆𝑚 𝑥  𝑆𝑚 𝑦 , 1.1) if two people are 

friends, then either both smoke or neither does.

Let´s take the constants : {𝐴𝑛𝑛𝑎, 𝐵𝑜𝑏}.

• 𝑀𝐿,𝐶 can be now be used to infer the probability of 𝐴𝑛𝑛𝑎 and 

𝐵𝑜𝑏 being friends given their smoking habits; the probability 

of 𝐵𝑜𝑏 having cancer given his friendship with 𝐴𝑛𝑛𝑎, etc.
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Example

The following graph corresponds to the induced MRF:

Formulas:  ∀𝑥 𝑆𝑚 𝑥  𝐶𝑎 𝑥 ,  ∀𝑥 ∀𝑦 𝐹𝑟 𝑥, 𝑦  𝑆𝑚 𝑥  𝑆𝑚 𝑦
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Markov Logic Networks (MLNs)

The probability distribution represented by the MLN is the 

following:

𝑃 𝑋 = 𝑥 =
1

𝑍
𝑒σ𝑖𝑤𝑖𝑛𝑖(𝑥)

where 𝑛𝑖(𝑥) is the number of basic instances of 𝐹𝑖 that are 

satisfied by 𝑥, and 𝑍 is the normalization constant.
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Another Example

• Let´s define an MLN with the following pair:

1: ( 𝑝 𝑋  𝑞 𝑋 , 1.2)

2: ( 𝑝 𝑋  𝑟 𝑋 , 2)

3: ( 𝑠 𝑋  𝑟 𝑋 , 3)

and the set of constants {𝑐}.

• The set of basic atoms {𝑝 𝑐 , 𝑞 𝑐 , 𝑟 𝑐 , 𝑠(𝑐)}, and the 

graph:
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Another Example

We have then 24 = 16 possible value assignments for the 

variables in the MRF. The probabilities are:

36



Another Example

• The normalization factor 𝑍 is computed as follows:

𝑍 = 7𝑒6.2 + 3𝑒3.2 + 2𝑒0 + 2𝑒5 + 𝑒4.2 + 𝑒1.2 ≈ 3891.673

• To compute the probability of formula p 𝑐  𝑞(𝑐), we have 

to sum the probabilities of all the worlds that satisfy it, that is 

13, 14, 15, and 16:

𝑒4.2 + 𝑒1.2 + 𝑒6.2 + 𝑒6.2

𝑍
≈

1055.5

3891.673
≈ 0.271
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Probabilistic Datalog+/− Ontologies



Probabilistic Datalog+/−

• Goal: to combine “classic” Datalog+/- with probabilistic 

models (in this class we use as example MLNs).

• The basic idea is to annotate formulas with sets of 

probabilistic events:

– Annotations means that the given formula only applies whenever the 

event occurs.

– The probability distribution associated to the events is described by 

means of an MLN (or any other probabilistic model).

• We are going to see different types of queries, as different 

kinds of explanations may be needed for different queries: 

ranking queries, conjunctive queries, and threshold queries.

39



Datalog+/−

• A database (instance) D over  is a set of atoms with 

predicates from  and arguments from .

D = {emp(bob), manager(bob), directs(bob, hr), emp(ann), 

supervises(bob,ann), manager(ann), works_in(ann,hr), 

works_in(bob,hr), works_in(bob,finance)}

• A conjunctive query (CQ) over  has the form:               

Q(X) = Y (X,Y), where  is a conjunction of atoms.

Q(X) = manager(X)  directs(X,hr) X = …

• A boolean conjunctive query (CQ) over  has the form:   

Q() = X,Y (X,Y), where  is a conjunction of atoms.

Q() = X manager(X)  directs(X,hr) Yes / No
40



Datalog+/−

• Answers to queries are defined via homomorphisms, which 

are mappings :   N      N   s.t.:

– c   implies (c) = c

– c  N implies (c)    N

–  is extended to atoms, sets of atoms, and conjunctions.

• The set of answers Q(D) is the set of tuples t over  s.t.

: X  Y    N  s.t. ((X,Y))  D, and (X) = t.

For Q(X) = manager(X)  directs(X,hr), the set of all 

answers over D is Q(D) = {bob}.

The answer to Q() = X manager(X)  directs(X,hr) is Yes.
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Datalog+/−

• Tuple-generating Dependencies (TGDs) are constraints of 

the form XY (X,Y)  Z (X,Z) where  and  are 

atomic conjunctions over  called the body and head of the 

TGD, respectively.

• Example TGDs:

manager(M)  emp(M)

manager(M)  P directs(M,P)

emp(E)  directs(E,P) 

E’ emp(E’)  supervises(E,E’)  works_in(E’,P)
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Datalog+/−

• Given a DB D and a set  of TGDs, the set of models

mods(D, ) is the set of all B s.t.:

– D  B

– every    is satisfied in B.

• The set of answers for a CQ Q to D and , ans(Q,D,), is 

the set of all tuples a s.t. a  Q(B) for all B  mods(D, ).

• Answers can be computed via the chase, a procedure for 

repairing a DB relative to a set of dependencies.
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The Chase

• (Informal) TGD Chase rule: 

– a TGD  is applicable in a DB D if body() maps to atoms in D

– if not already in D, the application of  on D adds an atom with 

“fresh” nulls corresponding to each existentially quantified 

variable in head().

• The (possibly infinite) chase is a universal model: there 

exists a homomorphism from chase(D, ) onto every B 
mods(D, ).

• Therefore we have that D    Q iff chase(D, )  Q.

• If  consists of certain restricted sets of TGDs, CQs can be 

evaluated on a fragment of constant depth k  |Q|, which is  

PTIME in the data complexity.
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Different types of complexity

Depending on the part of the ontology that we consider fixed, 

we have different types of complexity:

• Combined: nothing is fixed.

• ba-combined: the arity of the relational symbols are 

considered fixed.

• Data: the schema and the query are considered fixed.

• Query: the schema and  database instance are considered 

fixed.
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Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  ?

46
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Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  {father(z1,john)

47
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Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  {father(z1,john), person(z1)

48
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Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  {father(z1,john), person(z1), father(z2,z1)
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Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  {father(z1,john), person(z1), father(z2,z1),…}
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Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  {father(z1,john), person(z1), father(z2,z1),…}

INFINITE INSTANCE 
INFINITA 51
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Query Answering vía the chase

52

• The possible infinite chase is a universal model: there exists 

a homomorphism from chase(D, ) to every B  mods(D, 
).

• Therefore, we have that D    Q iff chase(D, )  Q.



Negative Constraints and EGDs

• Negative constraints (NCs) are formulas of the form                 

X (X)  , where (X) is a conjunction of atoms.

• NCs are easy to check, since we can simply verify that the 

CQ (X) has an empty set of answers.

• Equality Generating Dependencies (EGDs) are of the form 

X (X)  Xi = Xj , where  is a conjunction of atoms and 

Xi , Xj are variables from X.

• The Chase w.r.t. both TGDs and EGDs is easily extended.

• Here, we assume that EGDs are separable, which intuitively 

means that EGDs and TGDs are independent of each other.
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Guarded Datalog+/–

• A TGD is guarded if there exits an atom in the body that 

contains all variables that appear in the body.

XYZ R(X,Y,Z), S(Y), P(X,Z)  W Q(X,W) 

guard

• The chase has a finite treewidth  query answering is 

decidable

• Query answering is PTIME-complete in data complexity.

• Extends ELH DL (same data complexity).
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Guarded Datalog+/–
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Linear Datalog+/–

• A TGD is linear if there is only one atom in the body.

XY R(X,Y)  Z Q(X,Z) 

guard

• Linear TGDs are (trivially) guarded.

• Query answering is in AC0 in data complexity (FO 

rewritablity).

• Extends the family of DL-Lite DLs (same data complexity).
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Linear Datalog+/–
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Datalog+/– Overview
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Datalog+/– Overview
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• Same complexity if we consider NCs and non-conflicting 

EGDs.

• Same complexity for finite models.



Example

• Consider the example at the beginning modeled as an MLN:

1: ann(S1,I1,num)  ann(S2,I2,X)  overlap(I1,I2) : 3

2: ann(S1,I1,shop)  ann(S2,I2,mag)  overlap (I1,I2) : 1

3: ann(S1,I1,dl)  ann(S2,I2,pers)  overlap(I1,I2) : 0.25



Example

• Consider the example at the beginning modeled as an MLN:

1: ann(S1,I1,num)  ann(S2,I2,X)  overlap(I1,I2) : 3

2: ann(S1,I1,shop)  ann(S2,I2,mag)  overlap (I1,I2) : 1

3: ann(S1,I1,dl)  ann(S2,I2,pers)  overlap(I1,I2) : 0.25

• Graph representation:

61

a1: ann(shades,int5,10,num) a2: ann(shades,int5,10,mag)

a3: ann(shades,int5,10,shop) a4: ann(shades,int5,10,dl)

a5: overlap(int5,10,int5,10)

a6: ann(shades,int5,10,pers)



Example

• Computing probabilities w.r.t. this MLN:

… (64 possible settings for the binary random variables)

62

i a1 a2 a3 a4 a5 a6 SAT Probability

1 False False False False False False  e0 / Z

2 False False False True True True 3 e0.25 / Z

3 True False False True True True 1, 3 e3+0.25 / Z

4 True False True True True True 1, 3 e3+0.25 / Z

5 False True False False True False  e0 / Z

6 False True True False True True 2 e1 / Z

7 False True True True True True 2, 3 e1+0.25 / Z

8 True True True True True True 1, 2, 3 e3+1+0.25 / Z



Probabilistic Datalog+/− Ontologies

• A probabilistic Datalog+/- ontology consists of a classical 

Datalog+/- ontology O along with an MLN M.

Notation: KB = (O, M)

• Formulas in O are annotated with a set of pairs Xi = xi, 

with xi  {true, false} (we also use 0 and 1, respectively).

• Variables that don’t appear in the annotation are 

unconstrained.

• Possible world: a set of pairs Xi = xi where each Xi  X 

has a corresponding pair.

• Intuition: given a possible world, a subset of the formulas in 

O is induced.
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Probabilistic Datalog+/− Ontologies

• A probabilistic Datalog+/- ontology consists of a classical 

Datalog+/- ontology O along with an MLN M.

Notation: KB = (O, M)

• Formulas in O are annotated with a set of pairs Xi = xi, 

with xi  {true, false} (we also use 0 and 1, respectively).

• In tightly coupled ontologies, we allow annotations to 

contain variables, which can also appear in the formulas:

Example: number(X): {ann(X,I,num) = true}

• Though this increases expressivity, it causes the number of 

worlds to depend on the size of the database.
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Example Revisited

The following formulas were adapted from the previous 

examples to give rise to a probabilistic Datalog+/- ontology:

book(X)  editorialProd(X) : {}

magazine(X)  editorialProd(X) : {}

author(X)  person(X,P) : {}

descLogic(X)  author(X)   : {ann(X,I1,dl) = 1  ann(X,I2,pers) = 1

overlap(I1,I2) = 0}

shop(X)  editorialProd(X)   : {ann(X,I1,shop) = 1  ann(X,I2,mag) = 1

overlap(I1,I2) = 0}

number(X)  date(X)   : {ann(X,I1,num) = 1  ann(X,I1,date) = 1

overlap(I1,I2) = 0}

Formulas with an empty annotation always hold.
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Queries

There are three kinds of queries that have been proposed in 

this model:

1) Threshold queries: all ground atoms that have probability at 

least p, where p is specified as an input of the query.

Answer to threshold query Q = (, p) (with p  [0,1]): set of all 

ground atoms a with Pr(a)  p.

Example: Refer to the lecture notes. Consider probabilistic ontology 

 = (O, M) from Example 4, and threshold query Q = (, 0.15). 

See Figure 5 for the computation of the probabilities.

We have that Pr(a(x1))  0.191 and Pr(d(x3))  0.135. 

Therefore, a(x1) belongs to the output, while d(x3) does not.
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Queries

There are three kinds of queries that have been proposed in 

this model:

2) Ranking queries: the ranking of atomic consequences based on 

their probability values.

Answer to ranking query Q = rank(): tuple ans(Q) = a1, ..., an

such that {a1, ..., an} are all of the atomic consequences of O

for any   Worlds(M), and i < j  Pr(ai) > Pr(aj).

Example: Refer to the lecture notes.

The answer to query rank() is: a(x1), c(x1), d(x3), b(x2), d(x2)

67



Queries

There are three kinds of queries that have been proposed in 

this model:

3) Probabilistic Conjunctive Queries: answers are computed 

classically and accompanied by the probability value with 

which it is entailed by .

Example: Refer to the lecture notes.

The answer to query Q(X) = a(X)  c(X) is (x1, 0.191)
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Summary of Probabilistic Datalog+/-

• Uncertainty in rules is expressed by means of annotations

that refer to an underlying Markov Logic Network.

• The goal is to develop a language and algorithms capable of 

managing uncertainty in a principled and scalable way.

• Scalability in the framework rests on two pillars:

– We combine scalable rule-based approaches from the DB 

literature with annotations reflecting uncertainty; 

– Many possibilities for heuristic algorithms; MLNs are flexible, 

and sampling techniques may be leveraged.
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Explaining Probabilistic Uncertainty

• We now explore the question: 

What constitutes an explanation for a query to a 

probabilistic Datalog+/- KB?

• In general, the answer to this question will depend heavily 

on whom the explanation is intended for.

• How can we use the explicit knowledge from the model to 

explain answers and query answering?

• We now analyze some basic building blocks and discuss 

some approaches that unless stated otherwise apply to all 

three kinds of queries.
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Annotated chase

The chase data structure used to answer queries can be 

annotated to keep track of the probabilistic events that must 

hold; two ways of doing this are:

1) Annotate each node with a Boolean array of size |Worlds(M)|; during the 

execution of the chase procedure, annotations are propagated as 

inferences are made. This is best for cases in which: 

• The number of worlds is not excessively large, since the space used by 

the chase structure will grow by a factor of |Worlds(M)|;

• when a sampling-based approach is used to approximate: the size of 

each array can be reduced to (a function of) the number of samples.

• for tractable probabilistic models, this representation can be used to 

clearly obtain either the exact or approximate probability mass 

associated with each node of interest.
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Annotated chase

2) Annotate each node with a logical formula expressing the 

conditions that must hold for the node to be inferrable.

• More compact than the array-based method: size of formulas are 

bounded by the length of the derivation and the length of the 

original annotations in the probabilistic ontology. 

• On the other hand, extracting the specific worlds that make up the 

probabilistic mass associated with a given atom (or set of atoms 

for a query) is essentially equivalent to solving a #SAT problem.

• For tractable probabilistic models there is a greater chance of 

performing feasible computations, though the structure of the 

resulting logical formula depends greatly on how rules interact.
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Probabilities of atomic formulas

The annotated chase yields several tools that facilitate the 

provision of an explanation for the probability of an atom:

• Different derivation paths leading to the same result (can be 

summarized).

• Example branches, e.g. highlighting well-separated ones to show variety.

• Common aspects of worlds that make up most of the probability mass

(e.g., atoms in the probabilistic model that appear in most derivations).

To provide a balanced explanation, we can also focus on the 

cases in which the atom in question is not derived.

All of these elements are available independently of the 

specific probabilistic model used in the KB.
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Probabilities of more complex queries

Probabilistic conjunctive queries

• The basic building blocks described for atomic queries can 

be leveraged for this more complex case. 

• Depending on the kind of annotated chase graph used the 

probability of a set of atoms that must be true at once can 

be derived from that of each individual member.

• Opportunities for explanations of why a query is derived or 

not derived may also include selecting one or more 

elements of the conjunction that are responsible for lowering

the resulting probability of the query.
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Probabilities of more complex queries

Ranking queries

• Fundamental component of the answer: relationship

between the probabilities of atoms.

• The most important question to answer regarding 

explanations of such results is thus: 

For a given pair of atoms (a, b) such that a is ranked 

above b, why is it a > b and not b > a? 

• The basic elements discussed above can be used to shed 

light on this aspect.
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Probabilities of more complex queries

Ranking queries (cont.)

• Sampling-based methods yield probability intervals instead 

of point probabilities.

• The width of the resulting interval will be a function of the 

number and probability mass of the worlds taken into 

account vs. those left out. 

• Explanations can involve examples or summaries of how 

the probability mass gets to a minimum (lower bound) and, 

conversely, why the maximum (upper bound) is not higher.
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Inconsistency Tolerant Reasoning with 

Datalog+/− Ontologies



Inconsistency

• The presence of inconsistency in systems that manipulate 

knowledge cannot be ignored and sometimes it is not clear 

how to get rid of it.

• We need to live with conflicting information.

• Challenge: to interpret the constantly increasing amount of 

heterogeneous and dynamic data that come from disparate 

sources and domains.

• Goal: manage the inconsistency at query answering time by 

means of reasonable semantics and computationally 

efficient methods.
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In the rest of this class…

• The notion of inconsistency in ontological languages such 

as Datalog+/-

• Consistent Query Answering for Datalog+/-

• Approximate Consistent Query Answering

• Going beyond repairs (novel approaches)

• Explanations for Inconsistency-Tolerant Semantics
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Inconsistency in Datalog+/−

• We focus in the notion of logical inconsistency, that is a 

logic theory is inconsistent iff it has no models.

– Given a Datalog+/− ontology (D, ), we say that (D, ) is 

inconsistent iff mods(D,) =  (sometimes we will write it as 

(D, )  ).

• In Datalog+/−, inconsistency appears as the results of the 

violation of the integrity constraints (NCs and EGDs).

– chase(D,)  body(), for some   E  NC

81



Inconsistency in Datalog+/−

• Important: we assume that TGDs are correct; that is, they 

correctly capture the semantics of the domain.

• This assumption implies:

– The set of TGDs is always satisfiable; given , there always 

exists a database instance D such that  mods(D,)  .

– Conflicts arise because the data is wrong  the database 

instance is the part of the ontology that needs to be changed 

or repaired if we want to restore consistency.

• This is not the only option! Other works in the literature 

consider alternative assumptions (e.g., repair the set of 

TGDs, or TGDs and data together).
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Repairs

• General definition:

Given a Datalog+/− ontology (D, ), a repair for/of (D, ) is another 

ontology (D', ), such that mods(D,)   and (D', ) is “as close as 

possible to” a (D, ).

• The notion of closeness changes depending on the 

expressive power of the language and different assumptions 

over the application domain.

• A data (ABox) repair for (D, ) is a database instance D
such that: 

– (1) D  D, 

– (2) mods(D,)  , and

– (3) there is no D  D such that D   D  and  mods(D,)  .
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Repairs
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Consistent Query Answering

• We review some inconsistency-tolerant semantics for query 

answering (some originally designed for RDBMSs and 

others defined specifically for OBDA).

• Consistent Query Answering [ABC99], adapted as AR

semantics for Description Logics and rule-based ontological 

languages [LemboRR10]

• Approximations to AR:

– IAR, CAR, ICAR [LemboRR11] and ICR [BienvenuAAAI12]

– k-defeater and k-support [BRIJCAI13]

• Lazy Answers [LMSECAI12]
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AR Semantics[LemboRR10] 

• AR semantics is inspired on consistent answers (CQA) for 

RDBMS.

• It is based on the notion of data repairs, the idea is not to fix 

the database instance but to consider on-the-fly all possible 

ways of repairing it.

• Given KB = (D,) and a CQ Q, we say that KB AR Q iff
(R, )  Q for every repair R  Rep(KB). 

• It is a cautions approach, similar to the notion of certain 

answers.

• To decide if KB AR Q (even for atomic queries) is coNP-

complete for linear Datalog+/−.
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AR Semantics[LemboRR10] 
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AR Semantics: Example

D = {player(lio), striker(lio), coach(pep), coach(lio), 

midfielder(pep)}

T = {player(X)  teamMember(X), striker(X)  player(X),

coach(X) teamMember(X), striker(X)  plays(X, forward),

midfielder(X)  plays(X, midfield), midfielder(X)  player(X)}

chase(D,) = D  {teamMember(lio), teamMember(pep), 
plays(lio, forward), plays(pep, midfield), player(pep)}

NC = {player(X)  coach (X)  }

E = {coach(X)  coach(Y)  X = Y}
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AR Semantics [LemboRR10] 

D = {player(lio), striker(lio), coach(pep), coach(lio), 

midfielder(pep)}

We have 3 data repairs:

R1 = {player(lio), striker(lio), coach(pep)}

R2 = {player(lio), striker(lio), midfielder(pep)} 

R3 = { coach(lio), midfielder(pep) }

KB AR X teamMember(X)  player(X)

KB AR X plays(pep,X)
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AR Semantics: Complexity
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AR Semantics: Complexity
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From classic QA to AR
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Complexity AR (No  in the head)
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Consistent Query Answering:

Approximations to AR



Approximations to AR

Goal: manage the inconsistency by means of reasonable 

semantics and computationally efficient methods.

– We could argue if AR is a reasonable/meaningful semantics or 

not: too cautious? 

– Complexity wise… we saw AR is not likely to work in practice.

• Given two semantics X and Y, and KB = (D,) we say X is 

a sound approximation to Y iff for every query Q, if KB X Q 

then KB Y Q.

• We say X is a complete approximation to Y iff for every 

query Q, if KB Y Q then KB X Q.
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IAR Semantics [LemboRR10]  

Goal: manage the inconsistency by means of reasonable 

semantics and computationally efficient methods.

– We could argue if AR is a reasonable/meaningful semantics. 

– Complexity wise… we saw AR is not likely to work in practice.

• Given KB = (D,) and a CQ Q, we say KB IAR Q iff (R 

Rep(D,) R, )  Q. 

– Sound approximation to AR.

– P-TIME complete for guarded Datalog+/− for UCQs 

– AC0 (FO rewritable) for linear Datalog+/-.
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IAR Semantics [LemboRR10] 

D = {player(lio), striker(lio), coach(pep), coach(lio), 

midfielder(pep)}

We have 3 data repairs:

R1 = {player(lio), striker(lio), coach(pep)}

R2 = {player(lio), striker(lio), midfielder(pep)} 

R3 = { coach(lio), midfielder(pep) }

R1 R2 R3 = {}

KB  IAR X player(X)
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FO rewritable TGDs
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Q T

Q Q*

compilation

FO D

evaluation

SQL
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Query Answering in AC0

in data complexity



FO rewriting: IAR Semantics
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CAR Semantics [LemboRR10]

• AR is not independent of the KB syntactic form: two 

logically equivalent KBs that are inconsistent may have a 

different set of repairs. 

• Consistent Closure: CLC(D,)= { |   HB() s.t. S 
D and mods(S, )   and (S,)  }

• A closed (AR-) repair of (D, ) is a database instance D
such that: (1) D  CLC(D,), (2) mods(D,)  , and (3)

there is no D  CLC(D,) such that mods(D,)   and:

– D  D  D  D o,

– D  D = D  D and D  D

• (3) means that a closed repair maximally preserves D. 
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CAR Semantics

• Given KB = (D,) and a CQ Q, we say that KB CAR Q iff

(R, )  Q for every repair R  CRep(D,). 

• CAR is a complete approximation to AR.

• Answering atomic queries is in PTIME for linear Datalog+/−

• Coincides with ICAR for DL-LiteA, it is FO rewritable.

• CONP-complete for UCQs for linear Datalog+/−.

• DP-complete for EL / guarded Datalog+/− (UCQs).
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CAR Semantics

CLC(D,) = {player(lio), striker(lio), coach(pep), teamMember(pep), 

teamMember(lio), plays(lio, forward), midfielder(pep), plays(pep, 

mildfielder), coach(lio), player(pep)}

RC1 = {player(lio), striker(lio), coach(pep), teamMember(lio), 

teamMember(pep), plays(lio,forward), plays(pep, mildfilder)}

RC2 = {player(lio), striker(lio), midfielder(pep), teamMember(lio), 

teamMember(pep), plays(lio,forward), 

plays(pep,midfield),player(pep)} 

RC3 = {coach(lio), midfielder(pep), teamMember(lio), player(pep), 

teamMember(pep), plays(lio, forward), plays(pep,midfield)}

KB CAR  X plays (X, midfield)
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ICAR Semantics [LemboRR11]  

• Given KB = (D,) an a CQ Q, we say that KB ICAR Q iff

(R  CRep(D,) R, )  Q. 

DRC = {teamMember(lio), teamMember(pep), 

plays(pep, mildfilder), plays(lio, forward)}

• A sound approximation of CAR, and a complete 

approximation for IAR, and it is neither sound nor complete 

w.r.t. AR.

• PTIME for linear Datalog+/− for UCQs (FO rewritable for 

DL-LiteA).

• DP-complete for EL / guarded Datalog+/−.
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ICR Semantics [BienvenuAAAI12]

• Let Cn(D,) be the logical closure of D and .

• Let KB = (D,) and a CQ Q, we say that KB ICR Q iff

(R  Rep(KB) Cn(R,))  Q. 

• A sound approximation of AR and ICAR; all IAR answers 

are also ICR answers, but not the wother way around.

• coNP-hard for DL-LiteCore (more restrictive than DL-LiteA

and linear Datalog+/−), even for atomic queries. 

• FO-rewritable for UCQs for very simple ontologies (only 

concept inclusions and binary NCs).
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ICR Semantics

Cn(R1,) = {player(lio),striker(lio),coach(pep), plays(lio,forward), 

teamMember(lio), teamMember(pep)}

Cn(R2,) = {player(lio), striker(lio), midfielder(pep),

teamMember(lio), teamMember(pep), plays(lio,forward), 

plays(pep,midfield), player(pep)} 

Cn(R3,) = {coach(lio), midfielder(pep), teamMember(lio), 

teamMember(pep), player(pep), plays(pep,midfield)}

The intersection of all closed repairs is:

DCR = {teamMember(lio), teamMember(pep)}

KB ICR  X teamMember(X)  player(X)
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ICR vs. ICAR

Cn(R1,) = {player(lio), striker(lio), coach(pep), teamMember(lio), 
teamMember(pep), plays(lio,forward)}  RC1

Cn(R2,) = {player(lio), striker(lio), midfielder(pep), teamMember(lio), 
teamMember(pep), plays(lio,forward), plays(pep,midfield), player(pep)} = 
RC2

Cn(R3,) = {coach(lio), midfielder(pep), teamMember(lio), 
teamMember(pep), player(pep), plays(pep,midfield)}  RC3

DCR = {teamMember(lio), teamMember(pep)}



DRC = {teamMember(lio), teamMember(pep), plays(pep, mildfilder), 
plays(lio, forward)}

KB ICAR  plays(lio, forward)

KB ICR plays(lio, forward)
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Consistent Answers: 

Alternatives not directly based on data repairs



k-lazy Semantics



A dual perspective of inconsistency

Given a KB = (D,):

• Culprits or minimal inconsistent subsets of D w.r.t. .

• Clusters: are sets of culprits that overlap.

– Very informally, clusters group together atoms in D by their “type of 

inconsistency”, that is the atoms that are involved in (some of) the 

same conflicts.

– We define an equivalence relation w.r.t. this overlap relation.

Example: c1 = {player(lio), coach(lio)}

c2 = {striker (lio), coach(lio)}

c3 = {coach(pep), coach(lio)}

c4 = {midfielder (pep), coach(pep)}

clusters(KB) = c1  c2  c3  c4
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Clusters (another example)

D = {player(lio), plays(lio, forward), coach(pep), coach(lio), 

midfielder(pep), striker(lio)}

NC = {player(X)  coach(X)  }

Minimal inconsistent subsets of D:

c1 = {player(lio), coach(lio)}, 

c2 = {striker(lio), coach(lio)}

c4 = {midfielder(pep), coach(pep)}

clusters(KB) = {{player(lio), striker (lio), coach(lio)}, 

{midfielder (pep), coach(pep)}}
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Incision Functions

• Informally, incision functions allow to cut inconsistencies

from clusters.

• Given an Ontology KB = (D,), and incision function is a 

function  such that:

– (clusters(KB))  cl  clusters(KB) cl

– mods(D  (clusters(KB)))  

• Incision functions are generalizations of kernel incision 

functions used in belief revision for kernel contraction 

[Hansson94].
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Incision Functions and CQA 

• Optimal incision function opt is optimal iff for every subset B

 (clusters(KB)) we have mods(D  B)  .

Theorem: R  Rep(KB) iff exists an optimal incision function 

such that R = D - (clusters(KB)).

• A repair is the reminder of D after applying an optimal 

incision function to its clusters.

• Incision function all (clusters(KB))  cl  clusters(KB) cl.

KB IAR Q iff (D - all(clusters(KB)), ) Q.
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k-Lazy Semantics

• Alternative semantics based on incisions of size at most k to 

clusters in D:

– k-cut returns all subsets of size at most k of a cluster cl

such that cl without each subset is consistent w.r.t. .

– lazy(k, clusters(KB)) = cl  clusters(KB) ccl, ccl  k-cut(cl)

• A k-lazy-repair is any set R = D  lazy(k, clusters(KB)).

• k-lazy answers: KB LCONS Q iff (R,) Q for every R 
LRep(k,KB).
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Example

cl:{player(lio), striker (lio), coach(lio), midfielder (pep),
coach(pep)}

For k = 1 we have: 1-cut(cl)= {cl} LR = D  cl = {}

For k = 2 we have:

2-cut(cl)= {{coach(lio), coach(pep)}, {coach(lio), midfielder 
(pep)}}

2-lazy repairs: 

LR1 = D  {coach(lio), coach(pep)} = {player(lio), 

striker(lio), coach(pep)}

LR2 = D  {coach(lio), midfielder (pep)} = {player(lio), 
striker(lio), midfielder(pep)}

Q() =  X player (X,forward) 

KB AR Q but KB 2-LCONS Q
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Example (Cont.) 

For k = 3 we have:

3-cut(cl)= 2-cut(cl)  {{player(lio), striker (lio), coach(pep)}} 

= { coach(lio), midfielder(pep) } = {r1, r2, r3}

LRep(3,KB) = Rep(KB)
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k-lazy Semantics

• For any KB = (D,), and CQ Q we have:

– KB IAR Q iff KB 0-LCONS Q

– There exists k  0 such that KB AR Q 
iff KB k-LCONS Q

• The k-lazy incisions are not always minimal, therefore not

every k-lazy repair is a repair.

• In general, k-lazy answers are NEITHER sound nor 

complete with respect to AR nor CAR.

• k-lazy answers are not monotonic in k. 
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k-lazy

117

0-lazy 
= IAR

1-lazy

2-lazy

3-lazy

k-lazy = AR

…



k-lazy Semantics

• To compute de answers under k-lazy is coNP-hard for 

guarded Datalog +/− ontologies.

• Tractability for linear Datalog+/−:

– For a set of linear TGDs, the set of clusters can be 

computed in polynomial time in data complexity.

– Derivation from a cluster (without the corresponding cuts) 

are independent of the other clusters: there is no need to 

look at combinations of cuts across clusters.
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k-lazy and union-k-lazy Semantics

• Given KB = (D,), and CQ Q, for any k  0, we say that Q 
is entailed under union-k-lazy semantics iff

KB k’-LCONS Q for some 0  k’  k.

• For any k  0, any union-k-lazy answer for Q is also a 

union-k+1-lazy answer for Q (monotonic in k).

• Given KB = (D,) and CQ Q, for any k  0, the set of all k-

lazy and union-k-lazy answers for Q is always consistent

w.r.t. .
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union-k-lazy
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k-lazy and union-k-lazy Semantics

• Semantics based on incisions to clusters of at most size k.

• Value k is the “allowed budget” that an agent has for a 

reasoning task: 

– If k is enough to solve the conflicts in the cluster then we 

consider all possible ways to fix them.

– If not, remove the whole cluster (our budget is not enough!).

• The value of k bounds the reasoning capabilities of the 

agent (higher values of k afford more complex reasoning).

• As a consequence, the union-k-lazy semantics allows us to 

perform reasoning in an anytime progression.
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k-support and k-defeater

Semantics



k-support Semantics [BienvenuIJCAI13]  

• Given a KB = (D,) and a CQ Q, a set S  D is called a -

support for Q in D if mods(S, )   and (S, )  Q.

• Given a KB = (D,) and a CQ Q, KB k-supp Q if there 

exists S1,…, Sk such that each Si is a -support for Q in D,

and for each D’  Rep(D,) there exists some Si  D’. 

Consider Q() = X teamMember(X)  player(X)

S1 = {player(lio)} S2= {midfielder(pep)}

S1  r1, S1  r2, and S2  r3 
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k-support Semantics

• Sound approximation to AR.

• For any KB = (D,), and CQ Q we have:

– KB IAR Q iff KB 1-supp Q

– KB AR Q iff KB k-supp Q for some k

– For any  k  0, if KB k-supp Q then KB k+1-supp Q

• For a KB = (D,) for which query answering is FO-

rewritable, the size of -supports are bounded by the query 

Q, KB is FO-rewritable for k-support semantics for k  1.

124



k-defeater Semantics [BienvenuIJCAI13]  

• Given a KB = (D,) and a CQ Q, a k-defeater for Q in D is 

a set S  D s.t. |S|  k, mods(S, )  , and mods(S C, 

)   for every minimal -support C of Q in D.

• Given a KB = (D,) and a CQ Q, KB k-def Q if there is no 

S  D s.t. S is a k-defeater for Q in D. 

Consider Q() = X teamMember(X)  player(X)

C1 = {player(lio)} C2 = {striker(lio)} C3= {midfielder(pep)}

KB 1-def Q
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k-defeater Semantics

A family of progressively complete approximations to AR, 

starting from the brave semantics. 

The method may return answers that are together inconsistent.

• For any KB = (D,), and  CQ Q we have:

– KB brave Q iff KB 0-def Q

– KB AR Q iff KB k-sdef Q for every k  0

– For every k  1, if KB k+1-def Q then KB k-def Q

• If KB = (D,) is FO-rewritable s.t. the size of all culprits of 

D are bound, then KB is FO-rewritable for k-support for 

every k  1.
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Some Conclusions

• AR semantics is the default semantics for querying 

inconsistent ontologies.

• The approximation methods aim to provide computationally 

tractable procedures with cautious results.

• Other alternatives seek to get more meaningful results 

incorporating in the semantics other elements that either 

reflect aspects of the application domain (the budget in k-

lazy), or provide more substantial evidence for the answers 

(support, argumentation, etc.). 
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Why Explain Consistent Answers

• Inconsistency-tolerant semantics provide a way to reason 

with logical knowledge bases in the presence of 

inconsistency, without answers becoming meaningless. 

• Inconsistency then remains transparent to the user. 

• But for decision making we may not just want an answer, we 

may want an explanation of why that answer is true, 

especially if there are conflicts and the answer is not an 

expected one.

• It seems reasonable then to provide information that 

complements the set of answers in a way that helps the 

user understand. 
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Explaining Consistent Answers

• For instance, suppose the user asks if the query q() = X

p(X) is true and they get the answer No. 

• A natural question to ask would be: “Was it the case that 

there is no possible way to derive p(X) from the knowledge 

base, it is actually false, or was it the case that q is derivable 

from the KB but it is involved in a contradiction and the 

semantics cannot assure its truth value?”. 

• Interesting questions for explanatory purposes may be:

– “What makes Q true under some semantics S?”

– “What makes Q false under some semantics S?”.
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Explaining Positive Answers

• Explanations for positive and negative query answers under 

the brave, AR, and IAR for DLs [Bienvenu2016]. 

• An explanation for a query Q is based on causes for Q : A 

cause is a consistent set of facts from the KB (D or ABox) 

that yield Q.

• Positive explanations:

– For brave semantics is any cause for Q. 

– For IAR, is any cause of Q that does not participate in any 

contradiction. 
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Explaining Positive Answers

• An explanation for a query Q is based on causes for Q:       

A cause is a consistent set of facts from the KB (D or ABox) 

that yield Q.

• Positive explanations:

– For AR: not enough to provide one cause as different repairs 

may use different causes.

– An explanation is a (minimal) disjunction of causes that cover 

all repairs (every cause belongs to at least one repair and for 

each repair there is one cause in the set). 
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Explaining Negative Answers

• Explanations for negative answers for Q under AR are 

minimal subsets of D s.t. together with any cause for Q yield 

an inconsistency. 

• Explanations for negative answers under IAR: we only need 

to show that every cause is contradicted by some consistent 

subset of D (no cause can belong to all repairs). 

• Most of these problems are polynomial for the case of 

explanations for positive and negative answers under brave 

and IAR. 

• Explanations in both cases under the AR semantics are 

intractable. 
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Explaining k-lazy Answers

• Explanations for negative answers for Q under AR are 

minimal subsets of D s.t. together with any cause for Q yield 

an inconsistency (basically incisions).

• Other interesting questions may include: 

– What is the smallest k needed to make Q true under both k-

lazy and union-k-lazy semantics? 

– What are the causes that make Q change its truth value from k 

to k+1 under the k-lazy semantics (either from true to false or 

the other way around)? 
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Explaining k-lazy Answers

• Other interesting questions may include: 

– If Q is true under (union-)k-lazy semantics for some k > 0 but it 

is not a consistent answer, what are the reasons for this 

behavior? 

– This question actually elaborates on the previous one, as we 

can try to find for which k > k the truth value of Q changes, 

and find the reason by comparing k-cuts against k+1-cuts.
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Explaining Answers using Argumentation

• Informally: an argument can be seen as a set of premises 

(facts) that derives a conclusion by means of a logical 

theory (in Datalog+/– the application of the TGDs).

• We find arguments for and against a conclusion and 

analyze which ones survive (different semantics).

• Argumentation provides a natural dialogic structure and 

mechanism as part of the reasoning process.

• We can examine this structure to understand both why and 

how conclusions (answers) are reached. 
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Explaining Answers using Argumentation

• The work in [Arioua2015], proposes explanations as sets of 

logical arguments supporting the query. 

• We can think of causes of a query as arguments that entail 

or support the entailment of the query. 

• We can build arguments that contradict some sentence, and 

these can be used as reasons against a query or as 

explanations for negative answers. 

• All the examples of explanation proposals mentioned so far 

can be considered as argument-based explanations: 

different notions of argument and counterarguments can be 

constructed as a means for explanations. 
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Static vs. Dynamic Explanations

• The proposals mentioned above provide arguments for and 

against conclusions in a static way.

• Dynamical characteristics of argumentation frameworks can 

be exploited in an interactive explanation mechanism.

• [Arioua2016] dialectical explanations for brave, IAR and ICR:

– The system aims to make a user understand why a query Q is 

or is not entailed by the query answering semantics. 

– Arguments for and against the query are identified, analyzed, 

and weighed among each other.

– A query is entailed under a specific semantics if and only if the 

dialectical process ends with a winning argument in favor of 

the query. 
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Explaining through Defeasible Reasoning

• Defeasible reasoning: allows to model knowledge with 

contradictions and obtain conclusions that can be 

challenged in the presence of additional knowledge.

• [Martinez2014] develops a framework for inconsistency-

tolerant semantics for Datalog+/– based on defeasible 

argumentative reasoning:

– Defeasible TGDs and conclusions (Strict and Defeasible).

– Argumentation theory within the Datalog+/– query answering 

process itself: considering reasons for and against potential 

conclusions and deciding which are the ones that can be 

obtained (warranted) from the knowledge base.
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Explaining through Defeasible Reasoning

• Provides a framework to implement different inconsistency 

tolerant semantics depending on the argument comparison 

criterion: most of the semantics we saw today can be 

obtained within this framework. 

• It is not necessary to use and compute elements that are 

outside of the logic, such as repairs, kernels, clusters, 

incisions, etc., as the query answering engine is 

inconsistency-tolerant in itself.

• The argumentative process allows to compute the answers 

and the required explanations at the same time  no extra 

cost for computing explanations.
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