
Explanation-Friendly Query Answering

Under Uncertainty

Maria Vanina Martinez

Universidad de Buenos Aires, Argentina

In collaboration with:

Gerardo I. Simari

Universidad Nacional del Sur, Argentina

Consejo Nacional de Investigaciones

Científicas y Técnicas (CONICET)

September 23, 2019 – Bolzano, Italy

Quality AI Systems

• What kind of AI systems are we building?

• What kind of AI systems do we want to build?

• Three pillars to understand and produce quality AI systems:

– Bias

– Transparency

– Explicability

Quality AI Systems

• What kind of software systems are we building?

• What kind of software systems do we want to build?

• Three pillars to understand and produce quality software

systems:

– Bias

– Transparency

– Explicability

Quality AI Systems

• Bias: judgment based on preconceived notions or

prejudices.

– In the data, in the model, in the algorithms…

– Data used to train systems may come from biased/non-

representative samples (collection, human labelling, etc.)

– Function-based systems learn patterns from our data, they

may perpetuate inherent cultural bias.

– Knowledge-based models may also carry out bias…

– “Good” (e.g., coming from expertise) bias vs “bad” bias.

Quality AI Systems

• Transparency

– Auditable systems  norms/standards that guarantee

levels of “quality”.

– Make sure the reasoning/computational process makes

decisions that can be traced back.

– Clear assignments of responsibilities.

Quality AI Systems

• Explicability

– Many AI systems are simply black-boxes.

– Interpretability is not enough: the extent to which you can

predict a model’s result without necessarily trying to

understand why or how.

– Most systems (even those based on explicit knowledge

like symbolic AI) are not designed to be questioned about

the decisions they make or how the reasoning process

works.

Explanations…Why?

• Explicability

– Provide some level of transparency (some internal

aspects of the system are exposed)

– To ensure algorithmic fairness

– Identify potential bias/problems in the training data or

model

– To ensure that the algorithms perform as expected

– Human-computer interaction: explanations may help in

building trust

Explanations… What?

8

Explanations… What?

• The notion of explanation, and the related notions of

explainability and interpretability, have been studied for

quite some time in philosophy and related disciplines in the

social sciences [MILLER2019].

• Explanations are usually consumed by humans:

– A (human) user would like to know why a certain weather

forecast is likely to be true.

– A (human) user would like the bank employee to explain why

they are being denied a loan at the bank.

9

Explanations… How?

• What is the form of an explanation in the setting of a

(intelligent) computational system?

• What is a good or adequate explanation in this setting?

• In general terms, we can´t know… it depends on many

aspects:

– The type of system and results: analysis, decision making,

actions over the real world.

– Type of audience: does the user know the system´s

mechanics or is it used as a black box? What purpose does

the explanation serve for the user? Is the system audited?

10

Explanations for Decision Making

• In general terms, explanations for conclusions from a

reasoning system are typically aimed to:

– Clarify: ensure the user that the reasoning process is correct.

– Teach: transfer the knowledge of a certain mechanism so the

user can replicate the reasoning process in other situations

and contexts.

– Persuade: convince the user that the conclusion returned is

the best in the presence of all valid possibilities.

11

Static vs Dynamic Explanations

• Static explanations [MOULIN2002,Southwick91]: all the

necessary knowledge for the explanation is available from

the beginning.

– The explanation is made by means of a knowledge

structure that justifies the conclusion.

– More evidence can be provided about how the reasoning

process works to explain intermediate conclusions.

• This type of explanations are called fixed or based on

justifications (e.g., [Falappa2002,Garcia2013]).

12

Static vs Dynamic Explanations

• Dynamic explanations: they are based on both the

knowledge within the system and the knowledge from the

user.

– The user can ask for additional information and question

the reasoning process itself.

– This can be done by means of questions that guide the

explanation itself.

• This type of explanations involve an interactive mechanism,

usually based on some kind of controlled dialogue.

13

This talk today…

Two knowledge-based frameworks to handle uncertainty (in

Datalog+/- ontologies):

• Probabilistic reasoning

• Inconsistency-tolerant semantics for query answering

• How can we use the knowledge contained in the models to

explain their behavior and results?

14

Uncertainty

• Uncertainty appears everywhere in the Web:

– Inherent uncertainty: inherent to a particular domain (e.g,

weather forecast)

– Uncertainty coming from automatic processing of data (e.g.,

automatic integration of schemas or datasets)

– Uncertainty coming form the presence of inconsistency and

incompleteness

• At the moment, browsers and other Web technologies do

not manage uncertainty in a principled way.

15

Uncertainty

• Goal: fill the gap by developing of tools that can be applied

to perform different tasks in the Web; for instance, in

semantic search.

• One way to do this is by integrating ontology languages with

databases technologies and probabilistic models.

• In this class we will cover:

– Some probabilistic models that can be useful to model Web content.

– Algorithms for query answering: classic (exact probability), threshold,

and ranking.

– Scalable but expressive fragments of the language/model.

16

Example

• Consider the problem of entity extraction over the following

text snippet:

17

Probabilistic Models

• Probabilistic Graphical Models (PGMs) are graph-based

structures that are use to represent knowledge about a

uncertain domain.

• Representation:

– Nodes: random variables

– Arcs: probabilistic dependencies among variables; if there is

no arc between two variables then it means that the variables

are conditionally independent.

18

Probabilistic Models

Some well known and used types of PGMs:

– Bayes Nets (BNs)

– Markov Networks / Markov Random Fields (MRFs)

– Markov Logic Networks (MLNs)

– Markov Chains (MCs)

– ….

19

Probabilistic Models

Some well known and used types of PGMs:

– Bayes Nets (BNs)

– Markov Networks / Markov Random Fields (MRFs)

– Markov Logic Networks (MLNs)

– Markov Chains (MCs)

– ….

20

Probabilistic Models:

Markov Networks

Markov Networks (MRFs)

A Markov Network (or Markov Random Field, MRF) is a non

directed graph where:

• every node represents a discrete random variable;

• arcs correspond to a notion of direct probabilistic interaction; this

interaction is parameterized with potential functions (there is a

potential function for every maximal clique);

• potentials: non-negative real functions over the variables in each

clique (the state of the clique);

• a node is conditionally independent from the rest of the nodes in

the graph given the values of its immediate neighbors (the

Markov blanket of the node).

22

Example

Variables:

• Sunny (the day is sunny)

• Hot (the day is hot)

• Beach (we go to the beach)

• Walk (we go for a walk)

23

Markov Networks (MRFs)

The joint distribution of variables 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} can be

defined as follows:

𝑃 𝑋 = 𝑥 =
1

𝑍
ෑ

𝑖

𝑖 𝑥 𝑖

where 𝑖 is the potential function and 𝑥𝑖 is the state of the 𝑖-th

maximal clique.

𝑍 is a normalizing constant so the sum of all probabilities adds

up to 1:

𝑍 = ෍

𝑥∈𝑋

ෑ

𝑖

𝑖(𝑥{𝑖})

24

Example

We can calculate the probability that it is sunny and hot, and

that we go to the beach but don’t take a walk:

𝑃 𝑠  ℎ  𝑏  𝑤 =
1

𝑍
2 × 3 × 1.7 =

10.2

𝑍

25

Markov Networks (MRFs)

• Problem: expressing a value for each state of each clique is

exponential in the size of the model.

• We can obtain a more compact representation by means of

functions called features.

• For instance, the log-linear model defines:

𝑃 𝑋 = 𝑥 =
1

𝑍
𝑒σ𝑖𝑤𝑖𝑓𝑖(𝑥)

where the i vary over the set of cliques:

𝑍 = ෍

𝑥∈𝑋

𝑒σ𝑖𝑤𝑖𝑓𝑖(𝑥)

26

Markov Networks (MRFs)

• Features 𝑓𝑖(𝑥) (also real functions of the state) replace the

potentials.

• Each 𝑓𝑖(𝑥) has associated a weight 𝑤𝑖

• Here we consider binary features: 𝑓𝑖 𝑥 ∈ 0,1.

• The more direct translation from the previous form to this

one is:

a feature corresponding to each possible state 𝑥{𝑖}

of each clique, with weight ln 𝑖(𝑥{𝑖}).

27

Example

Coming back to our running example, we can define a simple

feature for the clique Sunny, Walk in the following way:

28

Probabilistic Models:

Markov Logic Networks

(or Markov Logic)

Markov Logic Networks (MLNs)

An MLN is a finite set of pairs (𝐹𝑖 , 𝑤𝑖), where:

• 𝐹𝑖 is a formula in FOL

• 𝑤𝑖 is a real number (the weight of the formula)

Together with a finite set of constants 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛, it defines

an MRF 𝑀𝐿,𝐶 in the following way:

• 𝑀𝐿,𝐶 contains a binary node for every possible basic instance of

an atom in 𝐿. The value of the node is 1 if the atom is true, and 0

otherwise.

• 𝑀𝐿,𝐶 contains a feature for each basic instance of formulas 𝐹𝑖 in 𝐿.

The value of the feature is 1 if the formula is true, or 0 otherwise,

the weight is the value 𝑤𝑖 associated with 𝐹𝑖 in 𝐿.

30

Markov Logic Networks (MLNs)

Observations:

• Basic atoms generate the node in the network.

• There is an arc between two nodes if and only if the basic

atoms appear together in at least one basic instance of a

formula in 𝐿.

• The formulas generate cliques in the network.

31

Example

• Consider the MLN defined by the pairs:

– (∀𝑥 𝑆𝑚 𝑥  𝐶𝑎 𝑥 , 1.5) Smoking causes cancer

– (∀𝑥 ∀𝑦 𝐹𝑟 𝑥, 𝑦  𝑆𝑚 𝑥  𝑆𝑚 𝑦 , 1.1) if two people are

friends, then either both smoke or neither does.

Let´s take the constants : {𝐴𝑛𝑛𝑎, 𝐵𝑜𝑏}.

• 𝑀𝐿,𝐶 can be now be used to infer the probability of 𝐴𝑛𝑛𝑎 and

𝐵𝑜𝑏 being friends given their smoking habits; the probability

of 𝐵𝑜𝑏 having cancer given his friendship with 𝐴𝑛𝑛𝑎, etc.

32

Example

The following graph corresponds to the induced MRF:

Formulas: ∀𝑥 𝑆𝑚 𝑥  𝐶𝑎 𝑥 , ∀𝑥 ∀𝑦 𝐹𝑟 𝑥, 𝑦  𝑆𝑚 𝑥  𝑆𝑚 𝑦

33

Markov Logic Networks (MLNs)

The probability distribution represented by the MLN is the

following:

𝑃 𝑋 = 𝑥 =
1

𝑍
𝑒σ𝑖𝑤𝑖𝑛𝑖(𝑥)

where 𝑛𝑖(𝑥) is the number of basic instances of 𝐹𝑖 that are

satisfied by 𝑥, and 𝑍 is the normalization constant.

34

Another Example

• Let´s define an MLN with the following pair:

1: (𝑝 𝑋  𝑞 𝑋 , 1.2)

2: (𝑝 𝑋  𝑟 𝑋 , 2)

3: (𝑠 𝑋  𝑟 𝑋 , 3)

and the set of constants {𝑐}.

• The set of basic atoms {𝑝 𝑐 , 𝑞 𝑐 , 𝑟 𝑐 , 𝑠(𝑐)}, and the

graph:

35

Another Example

We have then 24 = 16 possible value assignments for the

variables in the MRF. The probabilities are:

36

Another Example

• The normalization factor 𝑍 is computed as follows:

𝑍 = 7𝑒6.2 + 3𝑒3.2 + 2𝑒0 + 2𝑒5 + 𝑒4.2 + 𝑒1.2 ≈ 3891.673

• To compute the probability of formula p 𝑐  𝑞(𝑐), we have

to sum the probabilities of all the worlds that satisfy it, that is

13, 14, 15, and 16:

𝑒4.2 + 𝑒1.2 + 𝑒6.2 + 𝑒6.2

𝑍
≈

1055.5

3891.673
≈ 0.271

37

Probabilistic Datalog+/− Ontologies

Probabilistic Datalog+/−

• Goal: to combine “classic” Datalog+/- with probabilistic

models (in this class we use as example MLNs).

• The basic idea is to annotate formulas with sets of

probabilistic events:

– Annotations means that the given formula only applies whenever the

event occurs.

– The probability distribution associated to the events is described by

means of an MLN (or any other probabilistic model).

• We are going to see different types of queries, as different

kinds of explanations may be needed for different queries:

ranking queries, conjunctive queries, and threshold queries.

39

Datalog+/−

• A database (instance) D over  is a set of atoms with

predicates from  and arguments from .

D = {emp(bob), manager(bob), directs(bob, hr), emp(ann),

supervises(bob,ann), manager(ann), works_in(ann,hr),

works_in(bob,hr), works_in(bob,finance)}

• A conjunctive query (CQ) over  has the form:

Q(X) = Y (X,Y), where  is a conjunction of atoms.

Q(X) = manager(X)  directs(X,hr) X = …

• A boolean conjunctive query (CQ) over  has the form:

Q() = X,Y (X,Y), where  is a conjunction of atoms.

Q() = X manager(X)  directs(X,hr) Yes / No
40

Datalog+/−

• Answers to queries are defined via homomorphisms, which

are mappings :   N      N   s.t.:

– c   implies (c) = c

– c  N implies (c)    N

–  is extended to atoms, sets of atoms, and conjunctions.

• The set of answers Q(D) is the set of tuples t over  s.t.

: X  Y    N s.t. ((X,Y))  D, and (X) = t.

For Q(X) = manager(X)  directs(X,hr), the set of all

answers over D is Q(D) = {bob}.

The answer to Q() = X manager(X)  directs(X,hr) is Yes.

41

Datalog+/−

• Tuple-generating Dependencies (TGDs) are constraints of

the form XY (X,Y)  Z (X,Z) where  and  are

atomic conjunctions over  called the body and head of the

TGD, respectively.

• Example TGDs:

manager(M)  emp(M)

manager(M)  P directs(M,P)

emp(E)  directs(E,P) 

E’ emp(E’)  supervises(E,E’)  works_in(E’,P)

42

Datalog+/−

• Given a DB D and a set  of TGDs, the set of models

mods(D, ) is the set of all B s.t.:

– D  B

– every    is satisfied in B.

• The set of answers for a CQ Q to D and , ans(Q,D,), is

the set of all tuples a s.t. a  Q(B) for all B  mods(D, ).

• Answers can be computed via the chase, a procedure for

repairing a DB relative to a set of dependencies.

43

The Chase

• (Informal) TGD Chase rule:

– a TGD  is applicable in a DB D if body() maps to atoms in D

– if not already in D, the application of  on D adds an atom with

“fresh” nulls corresponding to each existentially quantified

variable in head().

• The (possibly infinite) chase is a universal model: there

exists a homomorphism from chase(D, ) onto every B 
mods(D, ).

• Therefore we have that D    Q iff chase(D, )  Q.

• If  consists of certain restricted sets of TGDs, CQs can be

evaluated on a fragment of constant depth k  |Q|, which is

PTIME in the data complexity.

44

Different types of complexity

Depending on the part of the ontology that we consider fixed,

we have different types of complexity:

• Combined: nothing is fixed.

• ba-combined: the arity of the relational symbols are

considered fixed.

• Data: the schema and the query are considered fixed.

• Query: the schema and database instance are considered

fixed.

45

Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  ?

46

Person(john)

D

Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  {father(z1,john)

47

Person(john)

D

Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  {father(z1,john), person(z1)

48

Person(john)

D

Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  {father(z1,john), person(z1), father(z2,z1)

49

Person(john)

D

Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  {father(z1,john), person(z1), father(z2,z1),…}

50

Person(john)

D

Chase

Input: Database instance D, set of TGDs 

Output: A model of D  

chase(D,) = D  {father(z1,john), person(z1), father(z2,z1),…}

INFINITE INSTANCE
INFINITA 51

Person(john)

D

Query Answering vía the chase

52

• The possible infinite chase is a universal model: there exists

a homomorphism from chase(D, ) to every B  mods(D,
).

• Therefore, we have that D    Q iff chase(D, )  Q.

Negative Constraints and EGDs

• Negative constraints (NCs) are formulas of the form

X (X)  , where (X) is a conjunction of atoms.

• NCs are easy to check, since we can simply verify that the

CQ (X) has an empty set of answers.

• Equality Generating Dependencies (EGDs) are of the form

X (X)  Xi = Xj , where  is a conjunction of atoms and

Xi , Xj are variables from X.

• The Chase w.r.t. both TGDs and EGDs is easily extended.

• Here, we assume that EGDs are separable, which intuitively

means that EGDs and TGDs are independent of each other.

53

Guarded Datalog+/–

• A TGD is guarded if there exits an atom in the body that

contains all variables that appear in the body.

XYZ R(X,Y,Z), S(Y), P(X,Z)  W Q(X,W)

guard

• The chase has a finite treewidth  query answering is

decidable

• Query answering is PTIME-complete in data complexity.

• Extends ELH DL (same data complexity).

54

Guarded Datalog+/–

55

Linear Datalog+/–

• A TGD is linear if there is only one atom in the body.

XY R(X,Y)  Z Q(X,Z)

guard

• Linear TGDs are (trivially) guarded.

• Query answering is in AC0 in data complexity (FO

rewritablity).

• Extends the family of DL-Lite DLs (same data complexity).

56

Linear Datalog+/–

57

Datalog+/– Overview

58

Datalog+/– Overview

59

• Same complexity if we consider NCs and non-conflicting

EGDs.

• Same complexity for finite models.

Example

• Consider the example at the beginning modeled as an MLN:

1: ann(S1,I1,num)  ann(S2,I2,X)  overlap(I1,I2) : 3

2: ann(S1,I1,shop)  ann(S2,I2,mag)  overlap (I1,I2) : 1

3: ann(S1,I1,dl)  ann(S2,I2,pers)  overlap(I1,I2) : 0.25

Example

• Consider the example at the beginning modeled as an MLN:

1: ann(S1,I1,num)  ann(S2,I2,X)  overlap(I1,I2) : 3

2: ann(S1,I1,shop)  ann(S2,I2,mag)  overlap (I1,I2) : 1

3: ann(S1,I1,dl)  ann(S2,I2,pers)  overlap(I1,I2) : 0.25

• Graph representation:

61

a1: ann(shades,int5,10,num) a2: ann(shades,int5,10,mag)

a3: ann(shades,int5,10,shop) a4: ann(shades,int5,10,dl)

a5: overlap(int5,10,int5,10)

a6: ann(shades,int5,10,pers)

Example

• Computing probabilities w.r.t. this MLN:

… (64 possible settings for the binary random variables)

62

i a1 a2 a3 a4 a5 a6 SAT Probability

1 False False False False False False  e0 / Z

2 False False False True True True 3 e0.25 / Z

3 True False False True True True 1, 3 e3+0.25 / Z

4 True False True True True True 1, 3 e3+0.25 / Z

5 False True False False True False  e0 / Z

6 False True True False True True 2 e1 / Z

7 False True True True True True 2, 3 e1+0.25 / Z

8 True True True True True True 1, 2, 3 e3+1+0.25 / Z

Probabilistic Datalog+/− Ontologies

• A probabilistic Datalog+/- ontology consists of a classical

Datalog+/- ontology O along with an MLN M.

Notation: KB = (O, M)

• Formulas in O are annotated with a set of pairs Xi = xi,

with xi  {true, false} (we also use 0 and 1, respectively).

• Variables that don’t appear in the annotation are

unconstrained.

• Possible world: a set of pairs Xi = xi where each Xi  X

has a corresponding pair.

• Intuition: given a possible world, a subset of the formulas in

O is induced.

63

Probabilistic Datalog+/− Ontologies

• A probabilistic Datalog+/- ontology consists of a classical

Datalog+/- ontology O along with an MLN M.

Notation: KB = (O, M)

• Formulas in O are annotated with a set of pairs Xi = xi,

with xi  {true, false} (we also use 0 and 1, respectively).

• In tightly coupled ontologies, we allow annotations to

contain variables, which can also appear in the formulas:

Example: number(X): {ann(X,I,num) = true}

• Though this increases expressivity, it causes the number of

worlds to depend on the size of the database.

64

Example Revisited

The following formulas were adapted from the previous

examples to give rise to a probabilistic Datalog+/- ontology:

book(X)  editorialProd(X) : {}

magazine(X)  editorialProd(X) : {}

author(X)  person(X,P) : {}

descLogic(X)  author(X)   : {ann(X,I1,dl) = 1  ann(X,I2,pers) = 1

overlap(I1,I2) = 0}

shop(X)  editorialProd(X)   : {ann(X,I1,shop) = 1  ann(X,I2,mag) = 1

overlap(I1,I2) = 0}

number(X)  date(X)   : {ann(X,I1,num) = 1  ann(X,I1,date) = 1

overlap(I1,I2) = 0}

Formulas with an empty annotation always hold.

65

Queries

There are three kinds of queries that have been proposed in

this model:

1) Threshold queries: all ground atoms that have probability at

least p, where p is specified as an input of the query.

Answer to threshold query Q = (, p) (with p  [0,1]): set of all

ground atoms a with Pr(a)  p.

Example: Refer to the lecture notes. Consider probabilistic ontology

 = (O, M) from Example 4, and threshold query Q = (, 0.15).

See Figure 5 for the computation of the probabilities.

We have that Pr(a(x1))  0.191 and Pr(d(x3))  0.135.

Therefore, a(x1) belongs to the output, while d(x3) does not.

66

Queries

There are three kinds of queries that have been proposed in

this model:

2) Ranking queries: the ranking of atomic consequences based on

their probability values.

Answer to ranking query Q = rank(): tuple ans(Q) = a1, ..., an

such that {a1, ..., an} are all of the atomic consequences of O

for any   Worlds(M), and i < j  Pr(ai) > Pr(aj).

Example: Refer to the lecture notes.

The answer to query rank() is: a(x1), c(x1), d(x3), b(x2), d(x2)

67

Queries

There are three kinds of queries that have been proposed in

this model:

3) Probabilistic Conjunctive Queries: answers are computed

classically and accompanied by the probability value with

which it is entailed by .

Example: Refer to the lecture notes.

The answer to query Q(X) = a(X)  c(X) is (x1, 0.191)

68

Summary of Probabilistic Datalog+/-

• Uncertainty in rules is expressed by means of annotations

that refer to an underlying Markov Logic Network.

• The goal is to develop a language and algorithms capable of

managing uncertainty in a principled and scalable way.

• Scalability in the framework rests on two pillars:

– We combine scalable rule-based approaches from the DB

literature with annotations reflecting uncertainty;

– Many possibilities for heuristic algorithms; MLNs are flexible,

and sampling techniques may be leveraged.

69

Explaining Probabilistic Uncertainty

• We now explore the question:

What constitutes an explanation for a query to a

probabilistic Datalog+/- KB?

• In general, the answer to this question will depend heavily

on whom the explanation is intended for.

• How can we use the explicit knowledge from the model to

explain answers and query answering?

• We now analyze some basic building blocks and discuss

some approaches that unless stated otherwise apply to all

three kinds of queries.

70

Annotated chase

The chase data structure used to answer queries can be

annotated to keep track of the probabilistic events that must

hold; two ways of doing this are:

1) Annotate each node with a Boolean array of size |Worlds(M)|; during the

execution of the chase procedure, annotations are propagated as

inferences are made. This is best for cases in which:

• The number of worlds is not excessively large, since the space used by

the chase structure will grow by a factor of |Worlds(M)|;

• when a sampling-based approach is used to approximate: the size of

each array can be reduced to (a function of) the number of samples.

• for tractable probabilistic models, this representation can be used to

clearly obtain either the exact or approximate probability mass

associated with each node of interest.

71

Annotated chase

2) Annotate each node with a logical formula expressing the

conditions that must hold for the node to be inferrable.

• More compact than the array-based method: size of formulas are

bounded by the length of the derivation and the length of the

original annotations in the probabilistic ontology.

• On the other hand, extracting the specific worlds that make up the

probabilistic mass associated with a given atom (or set of atoms

for a query) is essentially equivalent to solving a #SAT problem.

• For tractable probabilistic models there is a greater chance of

performing feasible computations, though the structure of the

resulting logical formula depends greatly on how rules interact.

72

Probabilities of atomic formulas

The annotated chase yields several tools that facilitate the

provision of an explanation for the probability of an atom:

• Different derivation paths leading to the same result (can be

summarized).

• Example branches, e.g. highlighting well-separated ones to show variety.

• Common aspects of worlds that make up most of the probability mass

(e.g., atoms in the probabilistic model that appear in most derivations).

To provide a balanced explanation, we can also focus on the

cases in which the atom in question is not derived.

All of these elements are available independently of the

specific probabilistic model used in the KB.

73

Probabilities of more complex queries

Probabilistic conjunctive queries

• The basic building blocks described for atomic queries can

be leveraged for this more complex case.

• Depending on the kind of annotated chase graph used the

probability of a set of atoms that must be true at once can

be derived from that of each individual member.

• Opportunities for explanations of why a query is derived or

not derived may also include selecting one or more

elements of the conjunction that are responsible for lowering

the resulting probability of the query.

74

Probabilities of more complex queries

Ranking queries

• Fundamental component of the answer: relationship

between the probabilities of atoms.

• The most important question to answer regarding

explanations of such results is thus:

For a given pair of atoms (a, b) such that a is ranked

above b, why is it a > b and not b > a?

• The basic elements discussed above can be used to shed

light on this aspect.

75

Probabilities of more complex queries

Ranking queries (cont.)

• Sampling-based methods yield probability intervals instead

of point probabilities.

• The width of the resulting interval will be a function of the

number and probability mass of the worlds taken into

account vs. those left out.

• Explanations can involve examples or summaries of how

the probability mass gets to a minimum (lower bound) and,

conversely, why the maximum (upper bound) is not higher.

76

References
1. T. Lukasiewicz, M. V. Martinez, G. Orsi, and G.I. Simari: “Heuristic

Ranking in Tightly Coupled Probabilistic Description Logics”. Proc. of

UAI 2012.

2. G. Gottlob, T. Lukasiewicz, M.V. Martinez, and G.I. Simari: “Query

Answering Under Uncertainty in Datalog+/- Ontologies”. AMAI, 2013.

3. T. Lukasiewicz, M.V. Martinez, and G.I. Simari: “Exact and

Approximate Query Answering in Tightly Coupled Probabilistic

Datalog+/-”. In Preparation.

4. Project PrOQAW (EPSRC):

http://www.cs.ox.ac.uk/projects/PrOQAW/

5. Project DIADEM (ERC): http://diadem.cs.ox.ac.uk/

6. Nyaya Ontological Query Answering System:

http://mais.dia.uniroma3.it/Nyaya/

7. ProbCog MLN Toolbox:

http://ias.cs.tum.edu/research/probcog

77

Inconsistency Tolerant Reasoning with

Datalog+/− Ontologies

Inconsistency

• The presence of inconsistency in systems that manipulate

knowledge cannot be ignored and sometimes it is not clear

how to get rid of it.

• We need to live with conflicting information.

• Challenge: to interpret the constantly increasing amount of

heterogeneous and dynamic data that come from disparate

sources and domains.

• Goal: manage the inconsistency at query answering time by

means of reasonable semantics and computationally

efficient methods.

79

In the rest of this class…

• The notion of inconsistency in ontological languages such

as Datalog+/-

• Consistent Query Answering for Datalog+/-

• Approximate Consistent Query Answering

• Going beyond repairs (novel approaches)

• Explanations for Inconsistency-Tolerant Semantics

80

Inconsistency in Datalog+/−

• We focus in the notion of logical inconsistency, that is a

logic theory is inconsistent iff it has no models.

– Given a Datalog+/− ontology (D, ), we say that (D, ) is

inconsistent iff mods(D,) =  (sometimes we will write it as

(D, )  ).

• In Datalog+/−, inconsistency appears as the results of the

violation of the integrity constraints (NCs and EGDs).

– chase(D,)  body(), for some   E  NC

81

Inconsistency in Datalog+/−

• Important: we assume that TGDs are correct; that is, they

correctly capture the semantics of the domain.

• This assumption implies:

– The set of TGDs is always satisfiable; given , there always

exists a database instance D such that mods(D,)  .

– Conflicts arise because the data is wrong  the database

instance is the part of the ontology that needs to be changed

or repaired if we want to restore consistency.

• This is not the only option! Other works in the literature

consider alternative assumptions (e.g., repair the set of

TGDs, or TGDs and data together).

82

Repairs

• General definition:

Given a Datalog+/− ontology (D, ), a repair for/of (D, ) is another

ontology (D', ), such that mods(D,)   and (D', ) is “as close as

possible to” a (D, ).

• The notion of closeness changes depending on the

expressive power of the language and different assumptions

over the application domain.

• A data (ABox) repair for (D, ) is a database instance D
such that:

– (1) D  D,

– (2) mods(D,)  , and

– (3) there is no D  D such that D   D  and mods(D,)  .

83

Repairs

84

Consistent Query Answering

• We review some inconsistency-tolerant semantics for query

answering (some originally designed for RDBMSs and

others defined specifically for OBDA).

• Consistent Query Answering [ABC99], adapted as AR

semantics for Description Logics and rule-based ontological

languages [LemboRR10]

• Approximations to AR:

– IAR, CAR, ICAR [LemboRR11] and ICR [BienvenuAAAI12]

– k-defeater and k-support [BRIJCAI13]

• Lazy Answers [LMSECAI12]

85

AR Semantics[LemboRR10]

• AR semantics is inspired on consistent answers (CQA) for

RDBMS.

• It is based on the notion of data repairs, the idea is not to fix

the database instance but to consider on-the-fly all possible

ways of repairing it.

• Given KB = (D,) and a CQ Q, we say that KB AR Q iff
(R, )  Q for every repair R  Rep(KB).

• It is a cautions approach, similar to the notion of certain

answers.

• To decide if KB AR Q (even for atomic queries) is coNP-

complete for linear Datalog+/−.

86

AR Semantics[LemboRR10]

87

AR Semantics: Example

D = {player(lio), striker(lio), coach(pep), coach(lio),

midfielder(pep)}

T = {player(X)  teamMember(X), striker(X)  player(X),

coach(X) teamMember(X), striker(X)  plays(X, forward),

midfielder(X)  plays(X, midfield), midfielder(X)  player(X)}

chase(D,) = D  {teamMember(lio), teamMember(pep),
plays(lio, forward), plays(pep, midfield), player(pep)}

NC = {player(X)  coach (X)  }

E = {coach(X)  coach(Y)  X = Y}

88

AR Semantics [LemboRR10]

D = {player(lio), striker(lio), coach(pep), coach(lio),

midfielder(pep)}

We have 3 data repairs:

R1 = {player(lio), striker(lio), coach(pep)}

R2 = {player(lio), striker(lio), midfielder(pep)}

R3 = { coach(lio), midfielder(pep) }

KB AR X teamMember(X)  player(X)

KB AR X plays(pep,X)

89

AR Semantics: Complexity

90

AR Semantics: Complexity

91

From classic QA to AR

92

Complexity AR (No  in the head)

93

Consistent Query Answering:

Approximations to AR

Approximations to AR

Goal: manage the inconsistency by means of reasonable

semantics and computationally efficient methods.

– We could argue if AR is a reasonable/meaningful semantics or

not: too cautious?

– Complexity wise… we saw AR is not likely to work in practice.

• Given two semantics X and Y, and KB = (D,) we say X is

a sound approximation to Y iff for every query Q, if KB X Q

then KB Y Q.

• We say X is a complete approximation to Y iff for every

query Q, if KB Y Q then KB X Q.

95

IAR Semantics [LemboRR10]

Goal: manage the inconsistency by means of reasonable

semantics and computationally efficient methods.

– We could argue if AR is a reasonable/meaningful semantics.

– Complexity wise… we saw AR is not likely to work in practice.

• Given KB = (D,) and a CQ Q, we say KB IAR Q iff (R 

Rep(D,) R, )  Q.

– Sound approximation to AR.

– P-TIME complete for guarded Datalog+/− for UCQs

– AC0 (FO rewritable) for linear Datalog+/-.

96

IAR Semantics [LemboRR10]

D = {player(lio), striker(lio), coach(pep), coach(lio),

midfielder(pep)}

We have 3 data repairs:

R1 = {player(lio), striker(lio), coach(pep)}

R2 = {player(lio), striker(lio), midfielder(pep)}

R3 = { coach(lio), midfielder(pep) }

R1 R2 R3 = {}

KB  IAR X player(X)

97

FO rewritable TGDs

98

Q T

Q Q*

compilation

FO D

evaluation

SQL

D (D    Q)  D  Q*

Query Answering in AC0

in data complexity

FO rewriting: IAR Semantics

99

Q 

Q Q*

compilation

FO D

evaluation

SQL

D (D   IAR Q)  D  Q*

 = T  NC

CAR Semantics [LemboRR10]

• AR is not independent of the KB syntactic form: two

logically equivalent KBs that are inconsistent may have a

different set of repairs.

• Consistent Closure: CLC(D,)= { |   HB() s.t. S 
D and mods(S, )   and (S,)  }

• A closed (AR-) repair of (D, ) is a database instance D
such that: (1) D  CLC(D,), (2) mods(D,)  , and (3)

there is no D  CLC(D,) such that mods(D,)   and:

– D  D  D  D o,

– D  D = D  D and D  D

• (3) means that a closed repair maximally preserves D.

100

CAR Semantics

• Given KB = (D,) and a CQ Q, we say that KB CAR Q iff

(R, )  Q for every repair R  CRep(D,).

• CAR is a complete approximation to AR.

• Answering atomic queries is in PTIME for linear Datalog+/−

• Coincides with ICAR for DL-LiteA, it is FO rewritable.

• CONP-complete for UCQs for linear Datalog+/−.

• DP-complete for EL / guarded Datalog+/− (UCQs).

101

CAR Semantics

CLC(D,) = {player(lio), striker(lio), coach(pep), teamMember(pep),

teamMember(lio), plays(lio, forward), midfielder(pep), plays(pep,

mildfielder), coach(lio), player(pep)}

RC1 = {player(lio), striker(lio), coach(pep), teamMember(lio),

teamMember(pep), plays(lio,forward), plays(pep, mildfilder)}

RC2 = {player(lio), striker(lio), midfielder(pep), teamMember(lio),

teamMember(pep), plays(lio,forward),

plays(pep,midfield),player(pep)}

RC3 = {coach(lio), midfielder(pep), teamMember(lio), player(pep),

teamMember(pep), plays(lio, forward), plays(pep,midfield)}

KB CAR  X plays (X, midfield)
102

ICAR Semantics [LemboRR11]

• Given KB = (D,) an a CQ Q, we say that KB ICAR Q iff

(R  CRep(D,) R, )  Q.

DRC = {teamMember(lio), teamMember(pep),

plays(pep, mildfilder), plays(lio, forward)}

• A sound approximation of CAR, and a complete

approximation for IAR, and it is neither sound nor complete

w.r.t. AR.

• PTIME for linear Datalog+/− for UCQs (FO rewritable for

DL-LiteA).

• DP-complete for EL / guarded Datalog+/−.

103

ICR Semantics [BienvenuAAAI12]

• Let Cn(D,) be the logical closure of D and .

• Let KB = (D,) and a CQ Q, we say that KB ICR Q iff

(R  Rep(KB) Cn(R,))  Q.

• A sound approximation of AR and ICAR; all IAR answers

are also ICR answers, but not the wother way around.

• coNP-hard for DL-LiteCore (more restrictive than DL-LiteA

and linear Datalog+/−), even for atomic queries.

• FO-rewritable for UCQs for very simple ontologies (only

concept inclusions and binary NCs).
104

ICR Semantics

Cn(R1,) = {player(lio),striker(lio),coach(pep), plays(lio,forward),

teamMember(lio), teamMember(pep)}

Cn(R2,) = {player(lio), striker(lio), midfielder(pep),

teamMember(lio), teamMember(pep), plays(lio,forward),

plays(pep,midfield), player(pep)}

Cn(R3,) = {coach(lio), midfielder(pep), teamMember(lio),

teamMember(pep), player(pep), plays(pep,midfield)}

The intersection of all closed repairs is:

DCR = {teamMember(lio), teamMember(pep)}

KB ICR  X teamMember(X)  player(X)

105

ICR vs. ICAR

Cn(R1,) = {player(lio), striker(lio), coach(pep), teamMember(lio),
teamMember(pep), plays(lio,forward)}  RC1

Cn(R2,) = {player(lio), striker(lio), midfielder(pep), teamMember(lio),
teamMember(pep), plays(lio,forward), plays(pep,midfield), player(pep)} =
RC2

Cn(R3,) = {coach(lio), midfielder(pep), teamMember(lio),
teamMember(pep), player(pep), plays(pep,midfield)}  RC3

DCR = {teamMember(lio), teamMember(pep)}



DRC = {teamMember(lio), teamMember(pep), plays(pep, mildfilder),
plays(lio, forward)}

KB ICAR plays(lio, forward)

KB ICR plays(lio, forward)
106

Consistent Answers:

Alternatives not directly based on data repairs

k-lazy Semantics

A dual perspective of inconsistency

Given a KB = (D,):

• Culprits or minimal inconsistent subsets of D w.r.t. .

• Clusters: are sets of culprits that overlap.

– Very informally, clusters group together atoms in D by their “type of

inconsistency”, that is the atoms that are involved in (some of) the

same conflicts.

– We define an equivalence relation w.r.t. this overlap relation.

Example: c1 = {player(lio), coach(lio)}

c2 = {striker (lio), coach(lio)}

c3 = {coach(pep), coach(lio)}

c4 = {midfielder (pep), coach(pep)}

clusters(KB) = c1  c2  c3  c4

109

Clusters (another example)

D = {player(lio), plays(lio, forward), coach(pep), coach(lio),

midfielder(pep), striker(lio)}

NC = {player(X)  coach(X)  }

Minimal inconsistent subsets of D:

c1 = {player(lio), coach(lio)},

c2 = {striker(lio), coach(lio)}

c4 = {midfielder(pep), coach(pep)}

clusters(KB) = {{player(lio), striker (lio), coach(lio)},

{midfielder (pep), coach(pep)}}
110

Incision Functions

• Informally, incision functions allow to cut inconsistencies

from clusters.

• Given an Ontology KB = (D,), and incision function is a

function  such that:

– (clusters(KB))  cl  clusters(KB) cl

– mods(D  (clusters(KB)))  

• Incision functions are generalizations of kernel incision

functions used in belief revision for kernel contraction

[Hansson94].

111

Incision Functions and CQA

• Optimal incision function opt is optimal iff for every subset B

 (clusters(KB)) we have mods(D  B)  .

Theorem: R  Rep(KB) iff exists an optimal incision function 

such that R = D - (clusters(KB)).

• A repair is the reminder of D after applying an optimal

incision function to its clusters.

• Incision function all (clusters(KB))  cl  clusters(KB) cl.

KB IAR Q iff (D - all(clusters(KB)), ) Q.

112

k-Lazy Semantics

• Alternative semantics based on incisions of size at most k to

clusters in D:

– k-cut returns all subsets of size at most k of a cluster cl

such that cl without each subset is consistent w.r.t. .

– lazy(k, clusters(KB)) = cl  clusters(KB) ccl, ccl  k-cut(cl)

• A k-lazy-repair is any set R = D  lazy(k, clusters(KB)).

• k-lazy answers: KB LCONS Q iff (R,) Q for every R 
LRep(k,KB).

113

Example

cl:{player(lio), striker (lio), coach(lio), midfielder (pep),
coach(pep)}

For k = 1 we have: 1-cut(cl)= {cl} LR = D  cl = {}

For k = 2 we have:

2-cut(cl)= {{coach(lio), coach(pep)}, {coach(lio), midfielder
(pep)}}

2-lazy repairs:

LR1 = D  {coach(lio), coach(pep)} = {player(lio),

striker(lio), coach(pep)}

LR2 = D  {coach(lio), midfielder (pep)} = {player(lio),
striker(lio), midfielder(pep)}

Q() =  X player (X,forward)

KB AR Q but KB 2-LCONS Q
114

Example (Cont.)

For k = 3 we have:

3-cut(cl)= 2-cut(cl)  {{player(lio), striker (lio), coach(pep)}}

= { coach(lio), midfielder(pep) } = {r1, r2, r3}

LRep(3,KB) = Rep(KB)

115

k-lazy Semantics

• For any KB = (D,), and CQ Q we have:

– KB IAR Q iff KB 0-LCONS Q

– There exists k  0 such that KB AR Q
iff KB k-LCONS Q

• The k-lazy incisions are not always minimal, therefore not

every k-lazy repair is a repair.

• In general, k-lazy answers are NEITHER sound nor

complete with respect to AR nor CAR.

• k-lazy answers are not monotonic in k.

116

k-lazy

117

0-lazy
= IAR

1-lazy

2-lazy

3-lazy

k-lazy = AR

…

k-lazy Semantics

• To compute de answers under k-lazy is coNP-hard for

guarded Datalog +/− ontologies.

• Tractability for linear Datalog+/−:

– For a set of linear TGDs, the set of clusters can be

computed in polynomial time in data complexity.

– Derivation from a cluster (without the corresponding cuts)

are independent of the other clusters: there is no need to

look at combinations of cuts across clusters.

118

k-lazy and union-k-lazy Semantics

• Given KB = (D,), and CQ Q, for any k  0, we say that Q
is entailed under union-k-lazy semantics iff

KB k’-LCONS Q for some 0  k’  k.

• For any k  0, any union-k-lazy answer for Q is also a

union-k+1-lazy answer for Q (monotonic in k).

• Given KB = (D,) and CQ Q, for any k  0, the set of all k-

lazy and union-k-lazy answers for Q is always consistent

w.r.t. .

119

union-k-lazy

120

union-0-
lazy = IAR

union-2-lazy

union-k-lazy  AR

…

union-1-lazy

k-lazy and union-k-lazy Semantics

• Semantics based on incisions to clusters of at most size k.

• Value k is the “allowed budget” that an agent has for a

reasoning task:

– If k is enough to solve the conflicts in the cluster then we

consider all possible ways to fix them.

– If not, remove the whole cluster (our budget is not enough!).

• The value of k bounds the reasoning capabilities of the

agent (higher values of k afford more complex reasoning).

• As a consequence, the union-k-lazy semantics allows us to

perform reasoning in an anytime progression.

121

k-support and k-defeater

Semantics

k-support Semantics [BienvenuIJCAI13]

• Given a KB = (D,) and a CQ Q, a set S  D is called a -

support for Q in D if mods(S, )   and (S, )  Q.

• Given a KB = (D,) and a CQ Q, KB k-supp Q if there

exists S1,…, Sk such that each Si is a -support for Q in D,

and for each D’  Rep(D,) there exists some Si  D’.

Consider Q() = X teamMember(X)  player(X)

S1 = {player(lio)} S2= {midfielder(pep)}

S1  r1, S1  r2, and S2  r3

123

k-support Semantics

• Sound approximation to AR.

• For any KB = (D,), and CQ Q we have:

– KB IAR Q iff KB 1-supp Q

– KB AR Q iff KB k-supp Q for some k

– For any k  0, if KB k-supp Q then KB k+1-supp Q

• For a KB = (D,) for which query answering is FO-

rewritable, the size of -supports are bounded by the query

Q, KB is FO-rewritable for k-support semantics for k  1.

124

k-defeater Semantics [BienvenuIJCAI13]

• Given a KB = (D,) and a CQ Q, a k-defeater for Q in D is

a set S  D s.t. |S|  k, mods(S, )  , and mods(S C,

)   for every minimal -support C of Q in D.

• Given a KB = (D,) and a CQ Q, KB k-def Q if there is no

S  D s.t. S is a k-defeater for Q in D.

Consider Q() = X teamMember(X)  player(X)

C1 = {player(lio)} C2 = {striker(lio)} C3= {midfielder(pep)}

KB 1-def Q

125

k-defeater Semantics

A family of progressively complete approximations to AR,

starting from the brave semantics.

The method may return answers that are together inconsistent.

• For any KB = (D,), and CQ Q we have:

– KB brave Q iff KB 0-def Q

– KB AR Q iff KB k-sdef Q for every k  0

– For every k  1, if KB k+1-def Q then KB k-def Q

• If KB = (D,) is FO-rewritable s.t. the size of all culprits of

D are bound, then KB is FO-rewritable for k-support for

every k  1.

126

Some Conclusions

• AR semantics is the default semantics for querying

inconsistent ontologies.

• The approximation methods aim to provide computationally

tractable procedures with cautious results.

• Other alternatives seek to get more meaningful results

incorporating in the semantics other elements that either

reflect aspects of the application domain (the budget in k-

lazy), or provide more substantial evidence for the answers

(support, argumentation, etc.).

127

Why Explain Consistent Answers

• Inconsistency-tolerant semantics provide a way to reason

with logical knowledge bases in the presence of

inconsistency, without answers becoming meaningless.

• Inconsistency then remains transparent to the user.

• But for decision making we may not just want an answer, we

may want an explanation of why that answer is true,

especially if there are conflicts and the answer is not an

expected one.

• It seems reasonable then to provide information that

complements the set of answers in a way that helps the

user understand.

128

Explaining Consistent Answers

• For instance, suppose the user asks if the query q() = X

p(X) is true and they get the answer No.

• A natural question to ask would be: “Was it the case that

there is no possible way to derive p(X) from the knowledge

base, it is actually false, or was it the case that q is derivable

from the KB but it is involved in a contradiction and the

semantics cannot assure its truth value?”.

• Interesting questions for explanatory purposes may be:

– “What makes Q true under some semantics S?”

– “What makes Q false under some semantics S?”.

129

Explaining Positive Answers

• Explanations for positive and negative query answers under

the brave, AR, and IAR for DLs [Bienvenu2016].

• An explanation for a query Q is based on causes for Q : A

cause is a consistent set of facts from the KB (D or ABox)

that yield Q.

• Positive explanations:

– For brave semantics is any cause for Q.

– For IAR, is any cause of Q that does not participate in any

contradiction.

130

Explaining Positive Answers

• An explanation for a query Q is based on causes for Q:

A cause is a consistent set of facts from the KB (D or ABox)

that yield Q.

• Positive explanations:

– For AR: not enough to provide one cause as different repairs

may use different causes.

– An explanation is a (minimal) disjunction of causes that cover

all repairs (every cause belongs to at least one repair and for

each repair there is one cause in the set).

131

Explaining Negative Answers

• Explanations for negative answers for Q under AR are

minimal subsets of D s.t. together with any cause for Q yield

an inconsistency.

• Explanations for negative answers under IAR: we only need

to show that every cause is contradicted by some consistent

subset of D (no cause can belong to all repairs).

• Most of these problems are polynomial for the case of

explanations for positive and negative answers under brave

and IAR.

• Explanations in both cases under the AR semantics are

intractable.

132

Explaining k-lazy Answers

• Explanations for negative answers for Q under AR are

minimal subsets of D s.t. together with any cause for Q yield

an inconsistency (basically incisions).

• Other interesting questions may include:

– What is the smallest k needed to make Q true under both k-

lazy and union-k-lazy semantics?

– What are the causes that make Q change its truth value from k

to k+1 under the k-lazy semantics (either from true to false or

the other way around)?

133

Explaining k-lazy Answers

• Other interesting questions may include:

– If Q is true under (union-)k-lazy semantics for some k > 0 but it

is not a consistent answer, what are the reasons for this

behavior?

– This question actually elaborates on the previous one, as we

can try to find for which k > k the truth value of Q changes,

and find the reason by comparing k-cuts against k+1-cuts.

134

Explaining Answers using Argumentation

• Informally: an argument can be seen as a set of premises

(facts) that derives a conclusion by means of a logical

theory (in Datalog+/– the application of the TGDs).

• We find arguments for and against a conclusion and

analyze which ones survive (different semantics).

• Argumentation provides a natural dialogic structure and

mechanism as part of the reasoning process.

• We can examine this structure to understand both why and

how conclusions (answers) are reached.

135

Explaining Answers using Argumentation

• The work in [Arioua2015], proposes explanations as sets of

logical arguments supporting the query.

• We can think of causes of a query as arguments that entail

or support the entailment of the query.

• We can build arguments that contradict some sentence, and

these can be used as reasons against a query or as

explanations for negative answers.

• All the examples of explanation proposals mentioned so far

can be considered as argument-based explanations:

different notions of argument and counterarguments can be

constructed as a means for explanations.

136

Static vs. Dynamic Explanations

• The proposals mentioned above provide arguments for and

against conclusions in a static way.

• Dynamical characteristics of argumentation frameworks can

be exploited in an interactive explanation mechanism.

• [Arioua2016] dialectical explanations for brave, IAR and ICR:

– The system aims to make a user understand why a query Q is

or is not entailed by the query answering semantics.

– Arguments for and against the query are identified, analyzed,

and weighed among each other.

– A query is entailed under a specific semantics if and only if the

dialectical process ends with a winning argument in favor of

the query.

137

Explaining through Defeasible Reasoning

• Defeasible reasoning: allows to model knowledge with

contradictions and obtain conclusions that can be

challenged in the presence of additional knowledge.

• [Martinez2014] develops a framework for inconsistency-

tolerant semantics for Datalog+/– based on defeasible

argumentative reasoning:

– Defeasible TGDs and conclusions (Strict and Defeasible).

– Argumentation theory within the Datalog+/– query answering

process itself: considering reasons for and against potential

conclusions and deciding which are the ones that can be

obtained (warranted) from the knowledge base.

138

Explaining through Defeasible Reasoning

• Provides a framework to implement different inconsistency

tolerant semantics depending on the argument comparison

criterion: most of the semantics we saw today can be

obtained within this framework.

• It is not necessary to use and compute elements that are

outside of the logic, such as repairs, kernels, clusters,

incisions, etc., as the query answering engine is

inconsistency-tolerant in itself.

• The argumentative process allows to compute the answers

and the required explanations at the same time  no extra

cost for computing explanations.

139

References
[ABC99] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. “Consistent query

answers in inconsistent databases”. Proceedings of PODS 1999. ACM, pp. 68–79.

[LemboRR10] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi,

Domenico Fabio Savo: “Inconsistency-Tolerant Semantics for Description Logics”.

RR 2010: 103–117.

[LemboRR11] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi,

Domenico Fabio Savo: “Query Rewriting for Inconsistent DL-Lite Ontologies”. RR

2011: 155–169.

[BienvenuAAAI12] Meghyn Bienvenu: “On the Complexity of Consistent Query

Answering in the Presence of Simple Ontologies”. AAAI 2012.

[BRIJCAI13] Meghyn Bienvenu, Riccardo Rosati: “Tractable Approximations of

Consistent Query Answering for Robust Ontology-based Data Access”. IJCAI 2013.

140

References
[MILLER2019] Miller, T.: Explanation in artificial intelligence: Insights from the social

sciences. Artificial Intelligence (267), 1–38 (2019) .

[MOULIN2002] Bernard Moulin, Hengameh Irandoust, Micheline Bélanger, and

Gaëlle Desbordes. Explanation and argumentation capabilities: Towards the

creation of more persuasive agents. Artificial Intelligence Review, 17(3):169–222,

2002.

[Southwick91] Richard W Southwick. Explaining reasoning: an overview of

explanation in knowledge based systems. The knowledge engineering review,

6(1):1–19, 1991.

[Falappa2002] Marcelo A Falappa, Gabriele Kern-Isberner, and Guillermo R Simari.

Explanations, belief revision and defeasible reasoning. Artificial Intelligence, 141(1-

2):1–28, 2002.

[Garcia2013] Alejandro J García, Carlos I Chesñevar, Nicolás D Rotstein, and

Guillermo R Simari. Formalizing dialectical explanation support for argument-based

reasoning in knowledge-based systems. Expert Systems with Applications,

40(8):3233–3247, 2013.
141

References
[Bienvenu2016] Bienvenu,M.,Bourgaux,C.,Goasdoue,F.:Explaininginconsistency-

tolerantqueryansweringoverdescriptionlogicknowledgebases.In:Proc.ofAAAI’16.pp.9

00–906.AAAIPress (2016)

[Arioua2015] Arioua, A., Tamani, N., Croitoru, M.: Query answering explanation in

inconsistent datalog +/- knowledge bases. In: DEXA (2015)

[Arioua2016] Arioua,A., Croitoru,M.: Dialectical Characterization of Consistent

Query Explanation with Existential Rules. In: FLAIRS: Florida Artificial Intelligence

Research Society (2016)

[Martinez2014] Martinez, M.V., Deagustini, C.A.D., Falappa, M.A., Simari, G.R.:

Inconsistency-tolerant reasoning in datalog+- ontologies via an argumentative

semantics. In: Advances in Artificial Intelligence – IBERAMIA 2014. pp. 15–27.

Springer International Publishing (2014)

142

References
[LMSECAI12] Thomas Lukasiewicz, Maria Vanina Martinez, Gerardo I. Simari:

“Inconsistency Handling in Datalog+/- Ontologies”. ECAI 2012: 558–563.

[LMSDat12] Thomas Lukasiewicz, Maria Vanina Martinez, Gerardo I. Simari:

“Inconsistency-Tolerant Query Rewriting for Linear Datalog+/-”. Datalog 2012:

pp. 123–134.

[LMPSAAAI15] Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris,

Gerardo I. Simari: “From Classical to Consistent Query Answering under Existential

Rules”. AAAI 2015: 1546–1552.

[Hansson94] Sven Ove Hansson, "Kernel Contraction", Journal of Symbolic Logic

59:845-859, 1994.

Part of the content of this course is based on the research done in collaboration with

Thomas Lukasiewicz, Georg Gottlob, V.S. Subrahmanian, Andreas Pieris, and

Giorgio Orsi.

143

