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The Traditional View of AI Planning

(Figure from [Smith (2012)])
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A Typical Reality: Interactive Decision Making

(Figure from [Smith (2012)])
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The Problem

Human AI

Solution

Task

Solution

Task

Plan
Why this plan and
not another plan? Plan

Why this plan and
not another plan?
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Our Approach: Plan-Property Dependencies

Human AI

Solution

Task

Plan
Why this plan and
not another plan? Plan

Why does this plan
not have property A? Plan

Why does this plan
not have property A?

Because all plans
with property A
have property B!

Because all plans
with property A
have property B!

Because all plans
with property A
have property B!
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Our Approach in Interactive AI Planning

(Figure adapted from [Smith (2012)])
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Classical Planning

FDR Planning: Syntax

A finite-domain representation (FDR) task is a tuple τ = (V,A, c, I,G):

V variables, each v ∈ V with a finite domain Dv; a state is a
complete assignment to V ;

A actions, each a ∈ A has precondition prea and effect eff a, both
partial assignments to V ;

c : A→ R+
0 action-cost function;

I initial state; G goal partial assignment to V ;

FDR Planning: Semantics

Action a applicable in state s if prea ⊆ s. Outcome state s[[a]] like s
except that s[[a]](v) = eff a(v) for those v on which eff a is defined.
Outcome state of iteratively applicable action sequence π denoted s[[π]].
Sequence π applicable in I is plan if G ⊆ I[[π]].
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(Toy) Example: IPC Rovers

goal:

I1 I2
I3

L1

L2

L3

L4

L5

L6

drive(Ri, Lx, Ly)

takeImage(Ix, Ry)
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Oversubscription Planning

Oversubscription Planning [Smith (2004); Domshlak and Mirkis (2015)]

An OSP task is a tuple τ = (V,A, c, I,Ghard, Gsoft, b):

V variables, A actions, c action-cost function, I initial state;

Ghard hard goal;

Gsoft soft goal;

b ∈ R+
0 cost budget.

π = 〈a1, . . . , an〉 is plan if
∑n

i=1 c(ai) ≤ b and Ghard ⊆ I[[π]].

Plan quality: Usually additive soft-goal rewards. Here:

User preferences hard to specify/elicitate. Iterative planning instead.

Goal-exclusion dependencies to support that process.
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OSP and Our Explanation Problem in Rovers

planning task

soft goals
plan

drive(R1, L1, L2)
takeImage(I1, R1)
drive(R2, L4, L5)
takeImage(I3, R2)
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Plan Properties

→ Plan properties over soft goals in OSP:

Plan Properties

OSP task τ = (V,A, c, I,Ghard, Gsoft, b), Π its set of plans.

Plan property: propositional formula φ over atoms g ∈ Gsoft

Conjunctive plan property: φ has form
∧
g∈A g or ¬

∧
g∈B g

Simple special case: In general, any function Π→ {true, false}
e. g. temporal plan trajectory constraints.

e. g. deadlines, resource bounds.

Compilation: Into (additional variables/actions and) goal facts!

e. g. LTL formulas

Here: action-set properties, easy special case of LTL
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Π-Entailment

→ Π in the role of a knowledge base:

Π-Entailment

OSP task τ = (V,A, c, I,Ghard, Gsoft, b), Π its set of plans π.

π satisfies φ, π |= φ: if φ true given truth value assignment to
g ∈ Gsoft defined by g ∈ I[[π]] ? g 7→ true : g 7→ false

MΠ(φ) := {π | π ∈ Π, π |= φ}
φ Π-entails ψ, written Π |= φ⇒ ψ: if MΠ(φ) ⊆MΠ(ψ)

→ Special case focus here:

Goal Exclusions

Goal exclusion: entailment of form Π |=
∧
g∈A g ⇒ ¬

∧
g∈B g

Non-dominated: 6 ∃ (A′, B′) 6= (A,B): A′ ⊆ A, B′ ⊆ B,
Π |=

∧
g∈A′ g ⇒ ¬

∧
g∈B′ g
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Π-Entailment: Rovers Example

Π-entailment:

⇒

Dominated Π-entailment:

⇒
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Global Explanations

→ All entailment relations over plan properties in the task:

Global Explanation (GE)

OSP task τ = (V,A, c, I,Ghard, Gsoft, b), Π its set of plans.

[φ]Π: equivalence class, i. e. set of ψ with MΠ(φ) =MΠ(ψ)

Global explanation (GE) for τ : strict partial order over equivalence
classes, [φ]Π < [ψ]Π iff [φ]Π 6= [ψ]Π and Π |= φ⇒ ψ

→ More practical variant for goal exclusions:

Goal-Exclusion GE

OSP task τ = (V,A, c, I,Ghard, Gsoft, b), Π its set of plans.

Goal-exclusion GE for τ : strict partial order over conjunctive plan
properties induced by the non-dominated goal exclusions
Π |=

∧
g∈A g ⇒ ¬

∧
g∈B g
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Goal-Exclusion GE: Rovers Example

All non-dominated goal exclusions:

⇒

⇒
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Local Explanations

→ In response to user question “Why not property φ?”:

Local Explanation (LE)

OSP task τ = (V,A, c, I,Ghard, Gsoft, b), Π its set of plans.

Local explanation (LE) for φ: {ψ | Π |= φ⇒ ψ}
Goal-exclusion LE for φ =

∧
g∈A g:

{ψ | ψ = ¬
∧
g∈B g,Π |= φ⇒ ψ is non-rhs-dominated}

Non-rhs-dominated: 6 ∃ B′: B′ ( B, Π |=
∧
g∈A g ⇒ ¬

∧
g∈B′ g

Remarks:

Smaller and easier to compute than GE (see next section).

Relative to current plan π in iterative planning: only those ψ where
π 6|= ψ (i. e. new properties entailed by φ).
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Goal-Exclusion LE: Rovers Example

Why does this plan not achieve ?

Because ⇒
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Another Example: Transportation (IPC “NoMystery”)

L0

P0, P1, P2

L1 T1

L2

L3

P1

L4

P0

L5

T0 P2

5

2

34 1
2

5

5

4

Variables V : T0, f0, T1, f1, P0, P1, P2

Actions A: drive(Ti, Lx, Ly),
load(Ti, Pj , Lx), unload(Ti, Pj , Lx)
Driving consumes fuel as indicated

Initial state I: as shown;
I(f0) = 13, I(f1) = 0

Goal Gsoft: at(P0, L4), at(P1, L3), at(P2, L5)

Non-dominated goal exclusions:

Π |= P0 ⇒ ¬(P1 ∧ P2)

Π |= P1 ⇒ ¬(P0 ∧ P2)

Π |= P2 ⇒ ¬(P0 ∧ P1)

→ In other words: “Gsoft is not solvable as a whole, but each of its
subsets is”.
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Discussion/Literature/Challenges

Framework intention:

Plan properties = language for (or finite set of) properties relevant
to user preferences.
Elucidate plan-property dependencies for interactive planning
(instead of just fixing an optimization objective).
Goal exclusions merely a simple starting point, yet powerful through
compilation (see later).

Positioning in literature:

”Does Π |= φ⇒ ψ?” = model checking of planning task.
⇒ Framework = exhaustive model checking of entailments within a
set P of plan properties.
Working hypothesis: Meaningful concept/special case.
Computation: Exploit relatedness across individual checks.
Very little prior work on model checking for planning models [Vaquero

et al. (2013)].
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Discussion/Literature/Challenges

Why does this plan not achieve ?

Because ⇒

But why ⇒ ? ”Why does Π |= φ⇒ ψ?”

Idea 1: Extend set P of plan properties to elucidate “the causal
chain between” φ and ψ.

→ One instance of problem how to identify the relevant set P .

Idea 2: Find minimal relaxation (superset) of Π in which
Π |= φ⇒ ψ no longer holds.

→ Drop hard goals, increase cost budget, . . .
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Non-Dominated Goal Exclusions from MUGS

Minimal Unsolvable Goal Subset (MUGS)

OSP task τ = (V,A, c, I,Ghard, Gsoft, b), Π its set of plans.

Minimal unsolvable goal subset (MUGS): unsolvable G ⊆ Gsoft,
every G′ ( G solvable

Proposition (Non-dominated Goal Exclusions from MUGS)

Non-dominated Π |=
∧
g∈A g ⇒ ¬

∧
g∈B g ⇔ A ∪B MUGS

Proof.

A Π-entailment Π |=
∧
g∈A g ⇒ ¬

∧
g∈B g clearly holds iff A ∪B is

unsolvable. Non-dominated entailments result from set-inclusion minimal
A and B, corresponding to the set-inclusion minimality of MUGS.

→ Compute and represent goal-exclusion GE via MUGs.
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Systematic Weakening

1 Start with Gsoft

2 Select open node G, call planner to test solvability, cache result,
expand G if unsolvable

3 children of G: G′ ⊂ G where |G′| = |G| − 1
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Experiments: Global Explanations

Reference Coverage SysS/W Coverage Search Fraction #MUGS, x =

hLM-cut OSP 0.25 0.5 0.75 0.25 0.75 average
domain 0.25 0.5 0.75 S W S W S W S W S W 0.25 0.5 0.75

agricola (20) 0 0 0 0 20 20 13 13 1 1 1 0.5 1 0.5 1 1 1
airport (50) 28 28 24 22 35 34 21 21 16 16 0.6 0.81 1 0.61 3.8 2 1.4
barman (34) 4 18 11 4 18 18 4 4 3 4 0.57 0.94 1 0.5 6.9 4.2 2.5
blocks (35) 28 35 28 21 35 35 29 29 26 26 0.15 0.97 0.8 0.64 11 12.4 13.7
childsnack (20) 0 2 0 0 4 4 0 0 0 0 0.34 0.98 - - 16.8 - -
data-network (20) 12 13 13 13 20 20 18 18 17 15 0.72 0.73 0.91 0.66 2.1 1.8 1.5
depot (22) 7 16 11 7 16 16 9 10 3 3 0.24 0.96 0.89 0.68 8.3 7 6.5
driverlog (20) 13 15 13 10 15 15 12 12 10 10 0.17 0.98 0.87 0.5 8.1 16.1 11.1
elevators (50) 40 22 22 22 47 48 38 37 27 27 0.35 0.94 0.9 0.67 4.6 5.1 5.9
floortile (36) 13 18 6 2 8 8 2 2 2 2 0.1 0.99 0.96 0.3 316.2 137 45.5
freecell (80) 15 77 30 21 76 76 30 30 18 18 0.31 0.94 0.88 0.76 4 4.3 3.3
ged (20) 15 20 20 20 16 20 10 12 7 7 0.25 0.9 0.58 0.7 13.3 38.7 12.5
grid (5) 2 5 3 2 5 5 3 4 3 3 0.54 0.84 1 0.54 4 2.5 1
gripper (20) 7 11 8 8 5 5 4 4 3 3 0.21 0.98 0.96 0.46 783.5 228 156
hiking (20) 9 19 14 13 20 20 16 17 11 10 0.81 0.69 1 0.63 1.8 1.7 1
logistics (60) 26 27 20 16 15 15 6 6 3 4 0.35 0.95 0.98 0.73 7.2 7.3 2.8
miconic (150) 141 97 66 55 66 64 42 43 35 36 0.3 0.92 0.95 0.61 81.3 38.2 18.8
mprime (35) 22 35 27 24 35 35 35 35 35 35 0.9 0.59 0.94 0.59 1.3 1.2 1.1
mystery (30) 12 29 27 21 30 30 30 30 30 30 0.89 0.61 0.93 0.61 1.3 1.2 1.1
nomystery (20) 14 20 14 10 20 20 12 12 8 8 0.15 0.98 0.87 0.61 20.2 18.5 5.8
openstacks (77) 47 63 56 52 49 43 45 39 42 35 0.03 0.99 0.12 0.98 15.3 14.9 10.3
organic-syn-s (13) 10 8 8 8 8 8 8 8 6 6 0.19 0.96 0.28 0.91 5.3 7.3 8.3
parcprinter (26) 24 26 22 18 10 14 10 14 10 12 0.44 0.98 0.73 0.85 5.6 7.5 4.1
parking (40) 5 25 5 0 17 12 1 1 0 0 0.02 1 - - 63.9 31
pathways (30) 5 5 4 4 7 7 5 5 4 4 0.41 0.86 0.91 0.7 11.3 3.8 1.8
pegsol (2) 2 2 2 2 0 2 0 2 0 2 - - - - 7 23.5 64
pipesworld-nt (50) 17 45 30 23 46 46 25 26 15 15 0.31 0.94 0.88 0.66 5 5.6 4.3
pipesworld-t (50) 12 33 20 16 39 40 18 17 13 11 0.35 0.95 0.88 0.65 4 4.2 3.2
Sum (1517) 828 1088 828 705 1026 1005 690 694 522 528
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Local Explanations from MUGS

→ In response to user question “Why not property
∧
g∈A g?”:

Proposition (Non-rhs-dominated Goal Exclusions from MUGS)

OSP task τ = (V,A, c, I,Ghard, Gsoft, b), Π its set of plans.
Modified task τ ′ := (V,A, c, I,Ghard ∪A,Gsoft \A, b).
Then: Non-rhs-dominated Π |=

∧
g∈A g ⇒ ¬

∧
g∈B g ⇔ B MUGS in τ ′.

This is easier & smaller because: Less soft goals!

Search tree size worst-case exponential in |Gsoft|
#MUGS worst-case exponential in |Gsoft|
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Experiments: Local Explanations

→ Performance and #MUGS as function of question size |A| in “Why
not property

∧
g∈A g?”:
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Discussion/Literature/Challenges

Many related computations: (for different purposes)

Minimal unsatisfiable cores [e. g. Chinneck (2007); Laborie (2014)].

Solvability borderline within a lattice of problem variants [de Kleer

(1986); Reiter (1987)]

MUGS = special case of preferred diagnoses [Grastien et al. (2011,

2012)], transfer pruning methods?

Suggesting goals to drop in oversubscribed situations [Yu et al. (2017);

Lauffer and Topcu (2019)].

Alternative algorithms to try:

Run a single search in state space finding all maximal solvable goal
subsets. Adapt pruning methods from oversubscription planning
[Domshlak and Mirkis (2015)]?

Represent the plan set Π symbolically (e. g. BDD), use that
representation to identify all entailment relations?
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We Want More General Plan Properties!

L1

L2

L3

L4

L5

L6

goal:

drive(R1, L1, L2)
takeImage(I1, R1)
drive(R2, L4, L5)
takeImage(I3, R2)
drive(R2, L5, L6)
takeImage(I2, R2)

L1 L2

don’t useconnection

⇒
specific rover
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Compilation!

→ Compile more general plan properties into (additional
variables/actions and) goal facts! For example:

Precondition and goal formulas, conditional effects [Gazen and

Knoblock (1997); Nebel (2000)]

LTL formulas over plan trajectory [Edelkamp (2006); Baier et al. (2009)]

Initial state uncertainty [Palacios and Geffner (2009)]

→ Here: effective-to-compile special case of LTL

Action-Set Properties

OSP task τ = (V,A, c, I,Ghard, Gsoft, b), Π its set of plans,
A1, . . . , An ⊆ A.

Action-set property: propositional formula φ over atoms A1, . . . , An

π |= φ: if φ true given truth value assignment Ai ∩ {a1, . . . , ak} 6= ∅
? Ai 7→ true : Ai 7→ false where π = 〈a1, . . . , ak〉
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Rovers Action-Set Properties

⊗

same rover

> 50%

energy limit

1. 2.

order

specific rover
Lx Ly

use connection

Lx Ly

don’t useconnection
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Rovers Action-Set Properties: “Same Rover”

⊗

same rover

Action sets:

Test formula:

A1 = {takeImage(I1, R1),
takeImage(I2, R1)}

A2 = {takeImage(I1, R2),
takeImage(I2, R2)}

A1 ⊗ A2
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Action-Set Property Compilation

Given: τ , Π, and A1, . . . , An

Construct: τ ′

Booleans isUsed i, initially false, set to true by any action from Ai;

formula-evaluation state variables and actions evaluating each pφ
based on these, setting Boolean flags isTrueφ;

separate 1. planning phase vs. 2. formula-evaluation phase, switch
action from 1. to 2. enabled when Ghard is satisfied.

⇒ planning-phase prefixes in τ ′ one-to-one Π; given such prefix π,
evaluation phase in τ ′ can achieve isTrueφ iff π |= φ.
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Rovers “Same Rover” Compilation: Illustration

A1 = {takeImage(I1, R1),
takeImage(I2, R1)}
A1 = {takeImage(I1, R1),
takeImage(I2, R1)}
A1 = {takeImage(I1, R1),
takeImage(I2, R1)}

A2 = {takeImage(I1, R2),
takeImage(I2, R2)}
A2 = {takeImage(I1, R2),
takeImage(I2, R2)}
A2 = {takeImage(I1, R2),
takeImage(I2, R2)}

A1 ⊗ A2

drive(R1, L1, L2)
takeImage(I1, R1)
drive(R2, L4, L6)
takeImage(I2, R2)
drive(R2, L6, L5)
· · ·

used

A1 X
A2 X
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MUGS

specific rover

L1 L2

don’t useconnection

L1 L2

don’t useconnection

⇒
specific rover
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Transportation Example (NoMystery)

L0

P0, P1, P2

L1 T1

L2

L3

P1

L4

P0

L5

T0 P2

5

2

34 1
2

5

5

4

Variables V : T1, f1, T2, f2, P0, P1, P2

Actions A: drive(Ti, Lx, Ly),
load(Ti, Pj , Lx), unload(Ti, Pj , Lx)
Driving consumes fuel as indicated

Initial state I: as shown;
I(f1) = 16, I(f2) = 7

Goal Gsoft: at(P0, L4), at(P1, L3), at(P2, L5)

Example action-set property analysis:

1. uses T0 (L2, L3); 2. same truck P1 P2; 3. uses T0 (L4, L3); 4.
same truck P2 P0; 5. doesn’t use T0 (L0, L5); 6. uses T1 (L5, L4).

MUGS: 7, each of size 3, including {5, 2, 4}.

→ User question “Why do you not avoid the road L0 − L5 (which has a
lot of traffic at the moment)?” “Because if you don’t use that road, then
you cannot deliver all packages with the same truck.”
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Experiments: Global Explanations

→ Blocksworld, NoMystery, Rovers, TPP (top left to bottom right):
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State-Space Conflict Based Learning

Conflict Based Learning: Is all over the place!

But: “State-space”

Conflict-based learning is ubiquitous in constraint reasoning.

Planning/reachability checking: Limited to bounded-length
reachability (which is a form of constraint reasoning, easily encoded
into e. g. SAT).

Can we learn from conflicts in unbounded-length state space search?
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Conflicts in State Space Search

What is a “conflict” in state space search?

→ Conflict = dead-end state from which the goal is unreachable.

Planning: took bad decisions (ran out of resources, etc).

Model checking safety properties: error can’t be reached from here.

Hoffmann and Magazzeni Explainable AI Planning 15th Reasoning Web Summer School (RW 2019) 44/55



Introduction OSP Framework Computing Compilations NoGoods References

Learning from Dead-End States

Constraint reasoning: For unsolvable partial assignment α that does not
violate the constraints, add a new constraint discarding α.

Basic idea: Constraints ≈ sound but incomplete dead-end detector ∆.

→ For unsolvable state s not detected by ∆, refine ∆ to detect s.

What are suitable ∆? E.g. ∆C , set C of atomic conjunctions :

∆C(s, g) =

 0 g ⊆ s
mina:Regress(g,a)6=⊥∆C(s,Regress(g, a)) g ∈ C
maxg′⊆g,g′∈C ∆C(s, g′) else

→ ∆C(s,G) =∞: “Goal unreachable even when breaking up conjunctive
subgoals into elements of C.” For suitable C, ∆C detects all dead-ends.

Conflict-Learning State Space Search: [Steinmetz and Hoffmann (2016, 2017c)]

Start with C containing the singleton conjunctions.

On dead-end s where ∆C(s,G) 6=∞, refine ∆C by adding new atomic
conjunctions, i. e., by extending C such that ∆C(s,G) =∞.

Further, learn a clause φ where s′ 6|= φ implies ∆C(s′, G) =∞.
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A Simple Transportation Example

Classical Planning Task: AB C

1 22

V = {t, f, p1, p2} with Dt = {A,B,C}, Df = {0, 1, 2},
Dpi = {A,B,C, T}.
A = {load(pi, x), unload(pi, x), drive(x, x′, n)}, where e. g.:
predrive(x,x′,y) = {(t, x), (f, n)} and eff drive(x,x′,y) = {(t, x′), (f, n− 1)}.
I = {(t, A), (f, 2), (p1, B), (p2, C)}. G = {(p1, C), (p2, B)}.

Conflict-Learning State Space Search

1 Forward state space search.

2 Identify dead-end states s.

3 Refine C so that ∆C(s,G) =∞.

4 Learn a clause φ s.t. s′ 6|= φ implies ∆C(s′, G) =∞.
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∆C in the Example

State: tB, f1, p1B, p2C AB C

1 21

C := C1 containing the singleton conjunctions:

1 tB, f1, p1B, p2C

2 drive(B,A, 1) → tA, load(p1, B) → p1t

3 drive(A,C, 1) [pre : tB, f1] → tC

4 unload(p1, C) → p1C, load(p2, C) → p2t

5 unload(p2, B) → p2B

C := C1 ∪ {tA ∧ f1}:
1 tB, f1, p1B, p2C

2 drive(B,A, 1) → tA [but 6→ tA ∧ f1], load(p1, B) → p1t

3 ((((((drive(A,C, 1) [pre : tA ∧ f1]
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Conflict-Learning State Space Search in the Example
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Discussion/Literature/Challenges

Mature exploration of variants:

Trap learning [Steinmetz and Hoffmann (2017b)]

Refining more powerful LP-based dead-end detectors [Steinmetz and

Hoffmann (2018)]

Offline nogood computation [Steinmetz and Hoffmann (2017a)]

Open questions:

Can we reason over the learned clauses, deducing new knowledge
from the already derived one?

Combine with property-directed reachability (PDR) [Bradley (2011);

Suda (2014)]: Combine PDR clauses with clauses from different ∆;
use lower-bound heuristic functions for additional pruning in PDR;
use heuristic functions for node selection in PDR.

Apply these methods to model checking and game playing . . .
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Last Slide

Thanks for your attention. Questions?
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