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German Physicists

Which physicists were born in Germany?
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Which physicists were born in Germany?

I Google can answer this question astonishingly well!

I although it misses Angela Merkel
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German Physicists

Which physicists were born in Germany?

I Google can answer this question astonishingly well!
I although it misses Angela Merkel

I How does it know?

I there is a Web page for that!
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Which physicists were born in Germany?

I Google can answer this question astonishingly well!
I although it misses Angela Merkel

I How does it know?
I there is a Web page for that!

I In general, Web search is based on matching keywords
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German Physicists

Which physicists were born in Germany?

I Google can answer this question astonishingly well!
I although it misses Angela Merkel

I How does it know?
I there is a Web page for that!

I In general, Web search is based on matching keywords
I There is no guarantee that the answer will be found

I even if there is a Web page with the answer
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German Physicists

Which physicists were born in Germany?

I Google can answer this question astonishingly well!
I although it misses Angela Merkel

I How does it know?
I there is a Web page for that!

I In general, Web search is based on matching keywords
I There is no guarantee that the answer will be found

I even if there is a Web page with the answer
I In some applications wrong/missed results cannot be tolerated

I medicine, banking, autonomous driving,. . .
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Description Logics

I Description Logics (DLs) are formal languages designed for
knowledge representation
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Description Logics

I Description Logics (DLs) are formal languages designed for
knowledge representation

I The basic principle is similar to Wikipedia:
I knowledge is described and curated in a single place (ontology)

by domain experts
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Description Logics

I Description Logics (DLs) are formal languages designed for
knowledge representation

I The basic principle is similar to Wikipedia:
I knowledge is described and curated in a single place (ontology)

by domain experts
I But the knowledge description is formal:

I use formulas instead of text
I each formula represents a piece of information
I like in mathematics, it is well-defined what each formula means
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Description Logics

I Description Logics (DLs) are formal languages designed for
knowledge representation

I The basic principle is similar to Wikipedia:
I knowledge is described and curated in a single place (ontology)

by domain experts
I But the knowledge description is formal:

I use formulas instead of text
I each formula represents a piece of information
I like in mathematics, it is well-defined what each formula means

I Main advantage: an answer can be obtained by combinding
several sources of information (formulas)
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Description Logics

I Example:
F1 = “Albert Einstein was a physicist”
F2 = “Albert Einstein was born in Ulm”
F3 = “Ulm is a city in Germany”
⇒ “Albert Einstein was a German Physicists”
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DLs @ RW

I Reasoning Web summer school hosted many courses on DLs:
I DL introduction (@RW 2007, 2009, 2011, 2013)
I lightweight DLs (@RW 2010)
I query answering (@RW 2012, 2014, 2015)
I non-standard reasoning (@RW 2015, 2016)
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DLs @ RW

I Reasoning Web summer school hosted many courses on DLs:
I DL introduction (@RW 2007, 2009, 2011, 2013)
I lightweight DLs (@RW 2010)
I query answering (@RW 2012, 2014, 2015)
I non-standard reasoning (@RW 2015, 2016)

I In this course: a detailed account of core DL algorithms:
I reasoning: tableau-based procedures
I explantion: axiom-pinpointing methods
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DLs @ RW

I Reasoning Web summer school hosted many courses on DLs:
I DL introduction (@RW 2007, 2009, 2011, 2013)
I lightweight DLs (@RW 2010)
I query answering (@RW 2012, 2014, 2015)
I non-standard reasoning (@RW 2015, 2016)

I In this course: a detailed account of core DL algorithms:
I reasoning: tableau-based procedures
I explantion: axiom-pinpointing methods

I Main focus: correctness, complexity, optimizations
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Outline

Description Logics
The Basic Description Logic ALC
Semantics of ALC
Reasoning Problems
Reduction of Reasoning

Tableau Procedures

Axiom Pinpointing

Conclusions

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



7/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Outline

Description Logics
The Basic Description Logic ALC
Semantics of ALC
Reasoning Problems
Reduction of Reasoning

Tableau Procedures

Axiom Pinpointing

Conclusions

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



8/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Vocabulary of ALC

I The vocabulary of DL ALC consists of:
I Concept names (atomic concepts): A, B,. . .
I Role names (atomic roles): R, S, H,. . .
I Individual names (individuals): a, b, c,. . .
I Logical symbols: >, ⊥, ¬, u, t, ∀, ∃.

I Concepts represent sets of things:

I Human – set of all human beings
I Male – the set of all male (not necessarily human) beings
I Country – the set of all countries

I Roles represent relations between things:

I hasChild – holds between parents and their children
I hasLocation – holds between objects and their locations

I Individuals represent concrete (unique) objects:

I germany – the country of Germany
I john – the person John
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Complex Concepts of ALC
I Complex concepts are built using concept constructors:

I > (top) is a concept that represents all objects in the world
I ⊥ (bottom) is a concept that has no member objects
I C u D (conjunction) are the common objects of C and D
I C t D (disjunction) is the union of objects in C and D
I ¬C (negation) are all objects that are not in C
I ∃R.C (existential restriction) are all objects that are related via

role R to some object in C
I ∀R.C (universal restriction) are all objects that are related via

role R to only objects in C

I Examples:
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I Complex concepts are built using concept constructors:

I > (top) is a concept that represents all objects in the world
I ⊥ (bottom) is a concept that has no member objects
I C u D (conjunction) are the common objects of C and D
I C t D (disjunction) is the union of objects in C and D
I ¬C (negation) are all objects that are not in C
I ∃R.C (existential restriction) are all objects that are related via

role R to some object in C
I ∀R.C (universal restriction) are all objects that are related via

role R to only objects in C
I Examples:

I Male u Human – the set of male humans
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role R to some object in C
I ∀R.C (universal restriction) are all objects that are related via

role R to only objects in C
I Examples:

I Male u Human – the set of male humans
I Male t Female – the union of male and female beings

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



9/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Complex Concepts of ALC
I Complex concepts are built using concept constructors:

I > (top) is a concept that represents all objects in the world
I ⊥ (bottom) is a concept that has no member objects
I C u D (conjunction) are the common objects of C and D
I C t D (disjunction) is the union of objects in C and D
I ¬C (negation) are all objects that are not in C
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I ∀R.C (universal restriction) are all objects that are related via

role R to only objects in C
I Examples:

I Male u Human – the set of male humans
I Male t Female – the union of male and female beings
I ¬Male – the set of non-male beings
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Complex Concepts of ALC
I Complex concepts are built using concept constructors:

I > (top) is a concept that represents all objects in the world
I ⊥ (bottom) is a concept that has no member objects
I C u D (conjunction) are the common objects of C and D
I C t D (disjunction) is the union of objects in C and D
I ¬C (negation) are all objects that are not in C
I ∃R.C (existential restriction) are all objects that are related via

role R to some object in C
I ∀R.C (universal restriction) are all objects that are related via

role R to only objects in C
I Examples:

I Male u Human – the set of male humans
I Male t Female – the union of male and female beings
I ¬Male – the set of non-male beings
I ¬Male u Human – non-male humans
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Complex Concepts of ALC
I Complex concepts are built using concept constructors:

I > (top) is a concept that represents all objects in the world
I ⊥ (bottom) is a concept that has no member objects
I C u D (conjunction) are the common objects of C and D
I C t D (disjunction) is the union of objects in C and D
I ¬C (negation) are all objects that are not in C
I ∃R.C (existential restriction) are all objects that are related via

role R to some object in C
I ∀R.C (universal restriction) are all objects that are related via

role R to only objects in C
I Examples:

I ∃hasChild .Male – all beings that have a male child

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



9/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Complex Concepts of ALC
I Complex concepts are built using concept constructors:

I > (top) is a concept that represents all objects in the world
I ⊥ (bottom) is a concept that has no member objects
I C u D (conjunction) are the common objects of C and D
I C t D (disjunction) is the union of objects in C and D
I ¬C (negation) are all objects that are not in C
I ∃R.C (existential restriction) are all objects that are related via

role R to some object in C
I ∀R.C (universal restriction) are all objects that are related via

role R to only objects in C
I Examples:

I ∃hasChild .Male – all beings that have a male child
I ∀hasChild .Female – all beings that have only female children

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



9/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Complex Concepts of ALC
I Complex concepts are built using concept constructors:

I > (top) is a concept that represents all objects in the world
I ⊥ (bottom) is a concept that has no member objects
I C u D (conjunction) are the common objects of C and D
I C t D (disjunction) is the union of objects in C and D
I ¬C (negation) are all objects that are not in C
I ∃R.C (existential restriction) are all objects that are related via

role R to some object in C
I ∀R.C (universal restriction) are all objects that are related via

role R to only objects in C
I Examples:

I ∃hasChild .Male – all beings that have a male child
I ∀hasChild .Female – all beings that have only female children
I Male u ∀hasChild .¬Male – all male beings all of whose

children are not male
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Axioms of ALC

I Description Logic axioms postulate facts about concepts,
roles, or individuals:
I C v D (concept inclusion) states that every member of C is

also a member of D
I C ≡ D (concept equivalence) states that C and D have the

same members
I C(a) (concept assertion) states that the individual a is a

member of C
I R(a, b) (role assertion) states that the individuals a and b are

connected by the role R
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connected by the role R
I Examples:

I Human v Dead t Alive – every human is either dead or alive
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I C ≡ D (concept equivalence) states that C and D have the

same members
I C(a) (concept assertion) states that the individual a is a

member of C
I R(a, b) (role assertion) states that the individuals a and b are

connected by the role R
I Examples:

I Human v Dead t Alive – every human is either dead or alive
I Parent ≡ ∃hasChild .> – parents are exactly those that have

some child
I Male(john) – john is male
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Axioms of ALC

I Description Logic axioms postulate facts about concepts,
roles, or individuals:
I C v D (concept inclusion) states that every member of C is

also a member of D
I C ≡ D (concept equivalence) states that C and D have the

same members
I C(a) (concept assertion) states that the individual a is a

member of C
I R(a, b) (role assertion) states that the individuals a and b are

connected by the role R
I Examples:

I Human v Dead t Alive – every human is either dead or alive
I Parent ≡ ∃hasChild .> – parents are exactly those that have

some child
I Male(john) – john is male
I bornIn(einstein, ulm) – Albert Einstein was born in Ulm
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ALC Knowledge Bases

I An ALC knowledge base (or ontology) is a finite set O of
axioms.
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ALC Knowledge Bases

I An ALC knowledge base (or ontology) is a finite set O of
axioms.

I Typically consist of two parts:
I TBox (terminological axioms): concept inclusions and

equivalences
I ABox (assertion axioms): concept and role assertions
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ALC Knowledge Bases

I An ALC knowledge base (or ontology) is a finite set O of
axioms.

I Typically consist of two parts:
I TBox (terminological axioms): concept inclusions and

equivalences
I ABox (assertion axioms): concept and role assertions

I Example: take O consisting of three axioms:
(ax1) Parent ≡ ∃hasChild .>
(ax2) GrandParent ≡ ∃hasChild .Parent
(ax3) hasChild(john,mary)
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ALC Knowledge Bases

I An ALC knowledge base (or ontology) is a finite set O of
axioms.

I Typically consist of two parts:
I TBox (terminological axioms): concept inclusions and

equivalences
I ABox (assertion axioms): concept and role assertions

I Example: take O consisting of three axioms:
(ax1) Parent ≡ ∃hasChild .>
(ax2) GrandParent ≡ ∃hasChild .Parent
(ax3) hasChild(john,mary)
I Then its TBox = {(ax1), (ax2)}, its ABox = {(ax3)}
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Interpretation

I ALC has a model-theoretic Semantics
I the meaning of concepts and axioms is defined using

interpretations

I A DL interpretation is a pair I = (∆I , ·I), where
I ∆I (the domain of I) is an arbitrary non-empty set, and
I ·I (the interpretation function) is a mapping that assigns:

I to every concept name A a subset AI ⊆ ∆I
I to every role name R a relation RI ⊆ ∆I ×∆I
I to every individual a an element aI ∈ ∆I

I Example: define I = (∆I , ·I) as follows:

I ∆I = {a, b}
I HumanI = {a, b}, MaleI = {a}, FemaleI = {b}
I hasChildI = {〈a, b〉}
I johnI = a, maryI = b

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



13/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation

I ALC has a model-theoretic Semantics
I the meaning of concepts and axioms is defined using

interpretations
I A DL interpretation is a pair I = (∆I , ·I), where

I ∆I (the domain of I) is an arbitrary non-empty set, and
I ·I (the interpretation function) is a mapping that assigns:

I to every concept name A a subset AI ⊆ ∆I
I to every role name R a relation RI ⊆ ∆I ×∆I
I to every individual a an element aI ∈ ∆I

I Example: define I = (∆I , ·I) as follows:

I ∆I = {a, b}
I HumanI = {a, b}, MaleI = {a}, FemaleI = {b}
I hasChildI = {〈a, b〉}
I johnI = a, maryI = b

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



13/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation

I ALC has a model-theoretic Semantics
I the meaning of concepts and axioms is defined using

interpretations
I A DL interpretation is a pair I = (∆I , ·I), where
I ∆I (the domain of I) is an arbitrary non-empty set, and

I ·I (the interpretation function) is a mapping that assigns:

I to every concept name A a subset AI ⊆ ∆I
I to every role name R a relation RI ⊆ ∆I ×∆I
I to every individual a an element aI ∈ ∆I

I Example: define I = (∆I , ·I) as follows:

I ∆I = {a, b}
I HumanI = {a, b}, MaleI = {a}, FemaleI = {b}
I hasChildI = {〈a, b〉}
I johnI = a, maryI = b

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



13/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation

I ALC has a model-theoretic Semantics
I the meaning of concepts and axioms is defined using

interpretations
I A DL interpretation is a pair I = (∆I , ·I), where
I ∆I (the domain of I) is an arbitrary non-empty set, and
I ·I (the interpretation function) is a mapping that assigns:

I to every concept name A a subset AI ⊆ ∆I
I to every role name R a relation RI ⊆ ∆I ×∆I
I to every individual a an element aI ∈ ∆I

I Example: define I = (∆I , ·I) as follows:

I ∆I = {a, b}
I HumanI = {a, b}, MaleI = {a}, FemaleI = {b}
I hasChildI = {〈a, b〉}
I johnI = a, maryI = b

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



13/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation

I ALC has a model-theoretic Semantics
I the meaning of concepts and axioms is defined using

interpretations
I A DL interpretation is a pair I = (∆I , ·I), where
I ∆I (the domain of I) is an arbitrary non-empty set, and
I ·I (the interpretation function) is a mapping that assigns:

I to every concept name A a subset AI ⊆ ∆I

I to every role name R a relation RI ⊆ ∆I ×∆I
I to every individual a an element aI ∈ ∆I

I Example: define I = (∆I , ·I) as follows:

I ∆I = {a, b}
I HumanI = {a, b}, MaleI = {a}, FemaleI = {b}
I hasChildI = {〈a, b〉}
I johnI = a, maryI = b

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



13/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation

I ALC has a model-theoretic Semantics
I the meaning of concepts and axioms is defined using

interpretations
I A DL interpretation is a pair I = (∆I , ·I), where
I ∆I (the domain of I) is an arbitrary non-empty set, and
I ·I (the interpretation function) is a mapping that assigns:

I to every concept name A a subset AI ⊆ ∆I
I to every role name R a relation RI ⊆ ∆I ×∆I

I to every individual a an element aI ∈ ∆I

I Example: define I = (∆I , ·I) as follows:

I ∆I = {a, b}
I HumanI = {a, b}, MaleI = {a}, FemaleI = {b}
I hasChildI = {〈a, b〉}
I johnI = a, maryI = b

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



13/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation

I ALC has a model-theoretic Semantics
I the meaning of concepts and axioms is defined using

interpretations
I A DL interpretation is a pair I = (∆I , ·I), where
I ∆I (the domain of I) is an arbitrary non-empty set, and
I ·I (the interpretation function) is a mapping that assigns:

I to every concept name A a subset AI ⊆ ∆I
I to every role name R a relation RI ⊆ ∆I ×∆I
I to every individual a an element aI ∈ ∆I

I Example: define I = (∆I , ·I) as follows:

I ∆I = {a, b}
I HumanI = {a, b}, MaleI = {a}, FemaleI = {b}
I hasChildI = {〈a, b〉}
I johnI = a, maryI = b

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



13/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation

I ALC has a model-theoretic Semantics
I the meaning of concepts and axioms is defined using

interpretations
I A DL interpretation is a pair I = (∆I , ·I), where
I ∆I (the domain of I) is an arbitrary non-empty set, and
I ·I (the interpretation function) is a mapping that assigns:

I to every concept name A a subset AI ⊆ ∆I
I to every role name R a relation RI ⊆ ∆I ×∆I
I to every individual a an element aI ∈ ∆I

I Example: define I = (∆I , ·I) as follows:
I ∆I = {a, b}
I HumanI = {a, b}, MaleI = {a}, FemaleI = {b}
I hasChildI = {〈a, b〉}
I johnI = a, maryI = b

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I >I =

{a, b}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I >I = {a, b}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I >I = {a, b}
I (Male u Female)I =

∅

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I >I = {a, b}
I (Male u Female)I = ∅

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I >I = {a, b}
I (Male u Female)I = ∅
I (Male t Female)I =

{a, b}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I >I = {a, b}
I (Male u Female)I = ∅
I (Male t Female)I = {a, b}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I >I = {a, b}
I (Male u Female)I = ∅
I (Male t Female)I = {a, b}
I (¬Male)I =

{b}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I >I = {a, b}
I (Male u Female)I = ∅
I (Male t Female)I = {a, b}
I (¬Male)I = {b}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I >I = {a, b}
I (Male u Female)I = ∅
I (Male t Female)I = {a, b}
I (¬Male)I = {b}
I (Male u ¬Female)I =

{a}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I >I = {a, b}
I (Male u Female)I = ∅
I (Male t Female)I = {a, b}
I (¬Male)I = {b}
I (Male u ¬Female)I = {a}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I (∃hasChild .Female)I =

{a}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I (∃hasChild .Female)I = {a}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I (∃hasChild .Female)I = {a}
I (∀hasChild .Female)I =

{a, b} (!!!)

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I (∃hasChild .Female)I = {a}
I (∀hasChild .Female)I = {a, b} (!!!)

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I (∃hasChild .Female)I = {a}
I (∀hasChild .Female)I = {a, b} (!!!)
I (∀hasChild .Male)I =

{b} (!!!)

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I (∃hasChild .Female)I = {a}
I (∀hasChild .Female)I = {a, b} (!!!)
I (∀hasChild .Male)I = {b} (!!!)

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I (∃hasChild .Female)I = {a}
I (∀hasChild .Female)I = {a, b} (!!!)
I (∀hasChild .Male)I = {b} (!!!)
I (∃hasChild .∀hasChild .⊥)I =

{a}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



14/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Complex Concepts
I The interpretation function ·I can be recursively extended to

complex concepts as follows:
I >I = ∆I
I ⊥I = ∅
I (C u D)I = CI ∩ DI
I (C t D)I = CI ∪ DI
I (¬C)I = ∆I \ CI
I (∃R.C)I = {x ∈ ∆I | ∃y : (x , y) ∈ RI & y ∈ CI}
I (∀R.C)I = {x ∈ ∆I | ∀y . (x , y) ∈ RI ⇒ y ∈ CI}

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, hasChildI = {〈a, b〉}. Then:
I (∃hasChild .Female)I = {a}
I (∀hasChild .Female)I = {a, b} (!!!)
I (∀hasChild .Male)I = {b} (!!!)
I (∃hasChild .∀hasChild .⊥)I = {a}

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



15/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Interpretation of Axioms

I An interpretation can either satisfy an axiom (I |= α) or
violate it (I 6|= α):
I I |= C v D iff CI ⊆ DI
I I |= C ≡ D iff CI = DI
I I |= C(a) iff aI ∈ CI
I I |= R(a, b) iff (aI , bI) ∈ RI
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I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, and hasChildI = {〈a, b〉},
johnI = a, maryI = b. Then:

I I

6|=

Male v Female
I I

|=

Male ≡ ¬Female
I I

6|=

(∃hasChild .Male)(john)
I I

6|=

hasChild(mary , john)
I I

|=

(∀hasChild .¬Male)(mary)
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Interpretation of Axioms

I An interpretation can either satisfy an axiom (I |= α) or
violate it (I 6|= α):
I I |= C v D iff CI ⊆ DI
I I |= C ≡ D iff CI = DI
I I |= C(a) iff aI ∈ CI
I I |= R(a, b) iff (aI , bI) ∈ RI

I Example: let I = (∆I , ·I) with ∆I = {a, b},
MaleI = {a}, FemaleI = {b}, and hasChildI = {〈a, b〉},
johnI = a, maryI = b. Then:
I I 6|= Male v Female
I I |= Male ≡ ¬Female
I I 6|= (∃hasChild .Male)(john)
I I 6|= hasChild(mary , john)
I I |= (∀hasChild .¬Male)(mary)
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Models

I Interpretations that satisfy axioms are of a special interest
I because they “agree” with the requirements imposed by axioms
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I I is called a model of O (I |= O) if I |= α for each α ∈ O
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I O is satisfiable if there exists at least one model I of O
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I Interpretations that satisfy axioms are of a special interest
I because they “agree” with the requirements imposed by axioms

I I is called a model of O (I |= O) if I |= α for each α ∈ O
I O is satisfiable if there exists at least one model I of O
I Otherwise, O is unsatisfiable or inconsistent
I Example: is the following ontology satisfiable?
(ax1) Parent ≡ ∃hasChild .>
(ax2) GrandParent ≡ ∃hasChild .Parent
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I Interpretations that satisfy axioms are of a special interest
I because they “agree” with the requirements imposed by axioms

I I is called a model of O (I |= O) if I |= α for each α ∈ O
I O is satisfiable if there exists at least one model I of O
I Otherwise, O is unsatisfiable or inconsistent
I Example: is the following ontology satisfiable?
(ax1) Parent ≡ ∃hasChild .>
(ax2) GrandParent ≡ ∃hasChild .Parent
I Satisfiable in a “trivial” interpretation I = (∆I , ·I) with

ParentI = GrandParentI = hasChildI = ∅.

Indeed:
(∃hasChild .>)I ≡ ∅ = ParentI and
(∃hasChild .Parent)I = ∅ = GrandParentI
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I Otherwise, O is unsatisfiable or inconsistent
I Example: is the following ontology satisfiable?
(ax1) Parent ≡ ∃hasChild .>
(ax2) GrandParent ≡ ∃hasChild .Parent
(ax3) (GrandParent u ¬Parent)(john)
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I because they “agree” with the requirements imposed by axioms

I I is called a model of O (I |= O) if I |= α for each α ∈ O
I O is satisfiable if there exists at least one model I of O
I Otherwise, O is unsatisfiable or inconsistent
I Example: is the following ontology satisfiable?
(ax1) Parent ≡ ∃hasChild .>
(ax2) GrandParent ≡ ∃hasChild .Parent
(ax3) (GrandParent u ¬Parent)(john)
I The trivial interpretation does not satisfy the last axiom!

johnI /∈ ∅ = (GrandParent u ¬Parent)I
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Models

I Interpretations that satisfy axioms are of a special interest
I because they “agree” with the requirements imposed by axioms

I I is called a model of O (I |= O) if I |= α for each α ∈ O
I O is satisfiable if there exists at least one model I of O
I Otherwise, O is unsatisfiable or inconsistent
I Example: is the following ontology satisfiable?
(ax1) Parent ≡ ∃hasChild .>
(ax2) GrandParent ≡ ∃hasChild .Parent
(ax3) (GrandParent u ¬Parent)(john)
I The trivial interpretation does not satisfy the last axiom!

johnI /∈ ∅ = (GrandParent u ¬Parent)I

I Proving unsatisfiability is harder: one has to prove that
I 6|= O for every interpretation I!
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Satisfiability of Concepts

I In addition to satisfiability of axioms, one can be interested in
satisfiability of concepts
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Satisfiability of Concepts

I In addition to satisfiability of axioms, one can be interested in
satisfiability of concepts

I A (possibly complex) concept C is satisfiable if there exists an
interpretation I such that CI 6= ∅
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I In addition to satisfiability of axioms, one can be interested in
satisfiability of concepts

I A (possibly complex) concept C is satisfiable if there exists an
interpretation I such that CI 6= ∅

I A (possibly complex) concept C is satisfiable w.r.t. O, if there
exists an interpretation I such that CI 6= ∅ and I |= O.
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Satisfiability of Concepts

I In addition to satisfiability of axioms, one can be interested in
satisfiability of concepts

I A (possibly complex) concept C is satisfiable if there exists an
interpretation I such that CI 6= ∅

I A (possibly complex) concept C is satisfiable w.r.t. O, if there
exists an interpretation I such that CI 6= ∅ and I |= O.

I Which of the following concepts are satisfiable?
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I In addition to satisfiability of axioms, one can be interested in
satisfiability of concepts

I A (possibly complex) concept C is satisfiable if there exists an
interpretation I such that CI 6= ∅

I A (possibly complex) concept C is satisfiable w.r.t. O, if there
exists an interpretation I such that CI 6= ∅ and I |= O.

I Which of the following concepts are satisfiable?
I ⊥

is not satisfiable because ⊥I = ∅ by definition
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I In addition to satisfiability of axioms, one can be interested in
satisfiability of concepts

I A (possibly complex) concept C is satisfiable if there exists an
interpretation I such that CI 6= ∅

I A (possibly complex) concept C is satisfiable w.r.t. O, if there
exists an interpretation I such that CI 6= ∅ and I |= O.

I Which of the following concepts are satisfiable?
I ⊥ is not satisfiable because ⊥I = ∅ by definition
I ∀R.⊥

is satisfiable in every I in which RI = ∅
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Satisfiability of Concepts

I In addition to satisfiability of axioms, one can be interested in
satisfiability of concepts

I A (possibly complex) concept C is satisfiable if there exists an
interpretation I such that CI 6= ∅

I A (possibly complex) concept C is satisfiable w.r.t. O, if there
exists an interpretation I such that CI 6= ∅ and I |= O.

I Which of the following concepts are satisfiable?
I ⊥ is not satisfiable because ⊥I = ∅ by definition
I ∀R.⊥ is satisfiable in every I in which RI = ∅
I ∃R.> w.r.t. O = {> v ∃R.⊥}

is not satisfiable because O
does not have a model (why?)

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



18/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Satisfiability of Concepts

I In addition to satisfiability of axioms, one can be interested in
satisfiability of concepts

I A (possibly complex) concept C is satisfiable if there exists an
interpretation I such that CI 6= ∅

I A (possibly complex) concept C is satisfiable w.r.t. O, if there
exists an interpretation I such that CI 6= ∅ and I |= O.

I Which of the following concepts are satisfiable?
I ⊥ is not satisfiable because ⊥I = ∅ by definition
I ∀R.⊥ is satisfiable in every I in which RI = ∅
I ∃R.> w.r.t. O = {> v ∃R.⊥} is not satisfiable because O
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Satisfiability of Concepts

I In addition to satisfiability of axioms, one can be interested in
satisfiability of concepts

I A (possibly complex) concept C is satisfiable if there exists an
interpretation I such that CI 6= ∅

I A (possibly complex) concept C is satisfiable w.r.t. O, if there
exists an interpretation I such that CI 6= ∅ and I |= O.

I Which of the following concepts are satisfiable?
I ⊥ is not satisfiable because ⊥I = ∅ by definition
I ∀R.⊥ is satisfiable in every I in which RI = ∅
I ∃R.> w.r.t. O = {> v ∃R.⊥} is not satisfiable because O

does not have a model (why?)
I A w.r.t. O = {A v ¬A}?

(tricky!)
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I ∃R.> w.r.t. O = {> v ∃R.⊥} is not satisfiable because O

does not have a model (why?)
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Entailment

I One is often interested in logical consequences of an ontology
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I One is often interested in logical consequences of an ontology
I An ontology O entails an axiom α (O |= α) if for every I

such that I |= O we have I |= α.
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such that I |= O we have I |= α.
I Example: O = {A v B, B v C} |= A v C

I if I |= O then AI ⊆ BI ⊆ CI

I Example: O = {A v ∃R.B, B v C} |= A v ∃R.C
I ∀x ∈ AI ∃y : 〈x , y〉 ∈ RI & y ∈ BI ⊆ CI
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I Example: O = {A v B, B v C} |= A v C
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Ontology Engineering

I How to create a useful ontology?

1. It should be detailed enough to capture the intended
application domain in a precise way

2. It should be error-free
I Both of these conditions are hard to achieve in the same time

I the more axioms are added, the higher is a chance of an error

I We should aim at detecting as much errors as possible
automatically
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Modeling Errors

I What can be regarded as a modeling error?

1. Inconsistency of an ontology O.

2. Unsatisfiability of an atomic concept: O |= A v ⊥

3. Unexpected consequence: O |= C v D
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Modeling Errors

I What can be regarded as a modeling error?
1. Inconsistency of an ontology O.

Example: O =
1.Parent ≡ ∃hasChild .>
2.GrandParent ≡ ∃hasChild .Parent
3. (GrandParent u ¬Parent)(john)

2. Unsatisfiability of an atomic concept: O |= A v ⊥

3. Unexpected consequence: O |= C v D
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I What can be regarded as a modeling error?
1. Inconsistency of an ontology O.

2. Unsatisfiability of an atomic concept: O |= A v ⊥

Example: O =
1. Parent v GrandParent
2. Parent u GandParent v ⊥

|= Parent v ⊥

3. Unexpected consequence: O |= C v D

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



22/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Modeling Errors

I What can be regarded as a modeling error?
1. Inconsistency of an ontology O.

2. Unsatisfiability of an atomic concept: O |= A v ⊥

Example: O =
1. Parent v GrandParent
2. Parent u GandParent v ⊥

|= Parent v ⊥

3. Unexpected consequence: O |= C v D

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



22/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Modeling Errors

I What can be regarded as a modeling error?
1. Inconsistency of an ontology O.

2. Unsatisfiability of an atomic concept: O |= A v ⊥

3. Unexpected consequence: O |= C v D

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



22/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Modeling Errors

I What can be regarded as a modeling error?
1. Inconsistency of an ontology O.

2. Unsatisfiability of an atomic concept: O |= A v ⊥

3. Unexpected consequence: O |= C v D

Example: O =
1. HappyParent ≡ ∀hasChild .Happy
2. NotParent ≡ ¬∃hasChild .>

|= NotParent v HappyParent
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Standard Reasoning Problems

I Ontology satisfiability checking:
I Given: O an ontology
I Return: yes if O is satisfiable, and no otherwise
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I Given: O an ontology
I Return: yes if O is satisfiable, and no otherwise

I Concept satisfiability checking:
I Given: O an ontology, C a concept
I Return: yes if C is satisfiable w.r.t. O, and no otherwise
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Standard Reasoning Problems

I Ontology satisfiability checking:
I Given: O an ontology
I Return: yes if O is satisfiable, and no otherwise

I Concept satisfiability checking:
I Given: O an ontology, C a concept
I Return: yes if C is satisfiable w.r.t. O, and no otherwise

I Concept subsumption checking:
I Given: O an ontology, C , D concepts
I Return: yes if O |= C v D and no otherwise
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Standard Reasoning Problems

I Ontology satisfiability checking:
I Given: O an ontology
I Return: yes if O is satisfiable, and no otherwise

I Concept satisfiability checking:
I Given: O an ontology, C a concept
I Return: yes if C is satisfiable w.r.t. O, and no otherwise

I Concept subsumption checking:
I Given: O an ontology, C , D concepts
I Return: yes if O |= C v D and no otherwise

I Instance checking:
I Given: O an ontology, C a concept, a an individual
I Return: yes if O |= C(a) and no otherwise
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Standard Reasoning Problems: Examples
I Example: ontology O:

1. Parent ≡ ∃hasChild .>
2. GrandParent ≡ ∃hasChild .Parent
3. hasChild(john,mary)
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Standard Reasoning Problems: Examples
I Example: ontology O:

1. Parent ≡ ∃hasChild .>
2. GrandParent ≡ ∃hasChild .Parent
3. hasChild(john,mary)

I Satisfiability checking: is O satisfiable? Yes:
I Take I = (∆I , ·I) with ∆I = {a, b}, johnI = a, maryI = b,

hasChildI = {〈a, b〉}, ParentI = {a}, GrandParentI = ∅.
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1. Parent ≡ ∃hasChild .>
2. GrandParent ≡ ∃hasChild .Parent
3. hasChild(john,mary)

I Satisfiability checking: is O satisfiable? Yes:
I Take I = (∆I , ·I) with ∆I = {a, b}, johnI = a, maryI = b,

hasChildI = {〈a, b〉}, ParentI = {a}, GrandParentI = ∅.
I Concept satisfiability: is Parent satisfiable w.r.t. O? Yes
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Standard Reasoning Problems: Examples
I Example: ontology O:

1. Parent ≡ ∃hasChild .>
2. GrandParent ≡ ∃hasChild .Parent
3. hasChild(john,mary)

I Satisfiability checking: is O satisfiable? Yes:
I Take I = (∆I , ·I) with ∆I = {a, b}, johnI = a, maryI = b,

hasChildI = {〈a, b〉}, ParentI = {a}, GrandParentI = ∅.
I Concept satisfiability: is Parent satisfiable w.r.t. O? Yes
I Concept satisfiability: is GrandParent satisfiable w.r.t. O?

Yes

I Take I = (∆I , ·I) with ∆I = {x , a, b}, johnI = a, maryI = b,
hasChildI = {〈x , a〉, 〈a, b〉}, ParentI = {x , a},
GrandParentI = {x}.
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hasChildI = {〈a, b〉}, ParentI = {a}, GrandParentI = ∅.
I Concept satisfiability: is Parent satisfiable w.r.t. O? Yes
I Concept satisfiability: is GrandParent satisfiable w.r.t. O? Yes

I Take I = (∆I , ·I) with ∆I = {x , a, b}, johnI = a, maryI = b,
hasChildI = {〈x , a〉, 〈a, b〉}, ParentI = {x , a},
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Standard Reasoning Problems: Examples
I Example: ontology O:

1. Parent ≡ ∃hasChild .>
2. GrandParent ≡ ∃hasChild .Parent
3. hasChild(john,mary)

I Satisfiability checking: is O satisfiable? Yes:
I Take I = (∆I , ·I) with ∆I = {a, b}, johnI = a, maryI = b,

hasChildI = {〈a, b〉}, ParentI = {a}, GrandParentI = ∅.
I Concept satisfiability: is Parent satisfiable w.r.t. O? Yes
I Concept satisfiability: is GrandParent satisfiable w.r.t. O? Yes

I Take I = (∆I , ·I) with ∆I = {x , a, b}, johnI = a, maryI = b,
hasChildI = {〈x , a〉, 〈a, b〉}, ParentI = {x , a},
GrandParentI = {x}.

I Concept subsumption: O |= Parent v GrandParent? No:
I I 6|= Parent v GrandParent.
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Standard Reasoning Problems: Examples
I Example: ontology O:

1. Parent ≡ ∃hasChild .>
2. GrandParent ≡ ∃hasChild .Parent
3. hasChild(john,mary)

I Concept subsumption: O |= GrandParent v Parent? Yes:

I Take any interpretation I such that I |= O.
I Take any x ∈ GrandParentI = (∃hasChild .Parent)I .
I Hence, ∃y : 〈x , y〉 ∈ hashChildI & y ∈ ParentI .
I Trivially, y ∈ ∆I = >I , so x ∈ (∃hasChild .>)I = ParentI .
I Since x ∈ GrandParentI was arbitrary, we proved that

GrandParentI ⊆ ParentI .
I Since I |= O was arbitrary, we proved that
O |= GrandParent v Parent.
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Standard Reasoning Problems: Examples
I Example: ontology O:

1. Parent ≡ ∃hasChild .>
2. GrandParent ≡ ∃hasChild .Parent
3. hasChild(john,mary)

I Instance checking: what are the instances of Parent?
I

O |=

Parent(john)

– See the paper

I

O 6|=

Parent(mary)

– maryI /∈ ParentI
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Standard Reasoning Problems: Examples
I Example: ontology O:

1. Parent ≡ ∃hasChild .>
2. GrandParent ≡ ∃hasChild .Parent
3. hasChild(john,mary)

I Instance checking: what are the instances of Parent?
I O |= Parent(john) – See the paper
I O 6|= Parent(mary) – maryI /∈ ParentI

I Instance checking: what are the instances of ¬Parent?
I

O 6|=

(¬Parent)(john)

– Exercise

I

O 6|=

(¬Parent)(mary)

– Exercise
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Reduction between Decision Problems

I There are quite many reasoning problems for DLs. Do we
really need to find algorithms for each of them independently?

Definition (Reduction)
P1 : X → {yes, no} is reducible to P2 : Y → {yes, no} if
∃ an algorithm R : X → Y (a reduction) such that ∀x ∈ X :

I if P1(x) = yes then P2(R(x)) = yes
I if P1(x) = no then P2(R(x)) = no

If R is polynomial then P1 is polynomially reducible to P2.

I polynomial reductions are of a most interest
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Reduction between Reasoning Problems

Ontology satisfiability
? ∃ I : I |= O

Concept satisfiability
?∃ I : I |= O & CI 6= ∅

Concept non-subsumption
?O 6|= C v D

Concept non-instance
?O 6|= C(a)
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Concept Satisfiability ⇒ Ontology Satisfiability

Ontology satisfiability
? ∃ I : I |= O

Concept satisfiability
?∃ I : I |= O & CI 6= ∅

Concept non-subsumption
?O 6|= C v D

Concept non-instance
?O 6|= C(a)

Lemma
C is satisfiable w.r.t. O iff O ∪ {C(a)} is satisfiable
for every a not appearing in O.
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Concept Satisfiability ⇒ Ontology Satisfiability

Lemma
C is satisfiable w.r.t. O iff O ∪ {C(a)} is satisfiable
for every a not appearing in O.

Proof.
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Concept Satisfiability ⇒ Ontology Satisfiability

Lemma
C is satisfiable w.r.t. O iff O ∪ {C(a)} is satisfiable
for every a not appearing in O.

Proof.
I (⇒) : if C is satisfiable w.r.t. O then there exists I |= O such

that CI 6= ∅. That is, there exists some x ∈ CI ⊆ ∆I .

Let J = (∆J , ·J ) be an interpretation such that:

I ∆J = ∆I
I AJ = AI , RJ = RI for every atomic A and R
I iJ = iI for every individual i 6= a
I aJ = x ∈ CI ∈ ∆I = ∆J

Then J |= O and J |= C(a).
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Concept Satisfiability ⇒ Ontology Satisfiability

Lemma
C is satisfiable w.r.t. O iff O ∪ {C(a)} is satisfiable
for every a not appearing in O.

Proof.
I (⇐) : If O ∪ {C(a)} is satisfiable then there exists a model
I |= O ∪ {C(a)}.

Then I |= O and aI ∈ CI 6= ∅.
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Concept Satisfiability ⇒ Ontology Satisfiability

Lemma
C is satisfiable w.r.t. O iff O ∪ {C(a)} is satisfiable
for every a not appearing in O.

Proof.
I (⇐) : If O ∪ {C(a)} is satisfiable then there exists a model
I |= O ∪ {C(a)}.
Then I |= O and aI ∈ CI 6= ∅.
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Concept Non-Subsumption ⇒ Concept Unsatisfiability

Ontology satisfiability
? ∃ I : I |= O

Concept satisfiability
?∃ I : I |= O & CI 6= ∅

Concept non-subsumption
?O 6|= C v D

Concept non-instance
?O 6|= C(a)

Lemma
O 6|= C v D iff C u ¬D is satisfiable w.r.t. O.

Proof.
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Concept Non-Subsumption ⇒ Concept Unsatisfiability

Lemma
O 6|= C v D iff C u ¬D is satisfiable w.r.t. O.

Proof.
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Concept Non-Subsumption ⇒ Concept Unsatisfiability

Lemma
O 6|= C v D iff C u ¬D is satisfiable w.r.t. O.

Proof.
I (⇒) : If O 6|= C v D then ∃I |= O: I 6|= C v D.

Then CI 6⊆ DI . Hence ∃x ∈ (CI \ DI) = (C u ¬D)I .
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Proof.
I (⇐) : If C u ¬D is satisfiable w.r.t. O
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Concept Non-Subsumption ⇒ Concept Unsatisfiability

Lemma
O 6|= C v D iff C u ¬D is satisfiable w.r.t. O.

Proof.
I (⇐) : If C u ¬D is satisfiable w.r.t. O
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Concept Subsumption ⇒ Concept Instance

Ontology satisfiability
? ∃ I : I |= O

Concept satisfiability
?∃ I : I |= O & CI 6= ∅

Concept non-subsumption
?O 6|= C v D

Concept non-instance
?O 6|= C(a)

Lemma
O |= C v D iff O ∪ {C(a)} |= D(a)
for every a not appearing in O.
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Concept Subsumption ⇒ Concept Instance

Lemma
O |= C v D iff O ∪ {C(a)} |= D(a)
for every a not appearing in O.
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Concept Non-Instance ⇒ Ontology Satisfiability

Ontology satisfiability
? ∃ I : I |= O

Concept satisfiability
?∃ I : I |= O & CI 6= ∅

Concept non-subsumption
?O 6|= C v D

Concept non-instance
?O 6|= C(a)

Lemma
O 6|= C(a) iff O ∪ {(¬C)(a)} is satisfiable.
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Concept Non-Instance ⇒ Ontology Satisfiability

Lemma
O 6|= C(a) iff O ∪ {(¬C)(a)} is satisfiable.

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



33/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Ontology Satisfiability ⇒ Everything Else

Ontology satisfiability
? ∃ I : I |= O

Concept satisfiability
?∃ I : I |= O & CI 6= ∅

Concept non-subsumption
?O 6|= C v D

Concept non-instance
?O 6|= C(a)

Corollary
All standard reasoning problems are reducible to each other in
polynomial time.
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Ontology Satisfiability ⇒ Everything Else

Lemma
Then the following conditions are equivalent:
1. O is unsatisfiable,
2. > is unsatisfiable w.r.t. O,
3. O |= > v ⊥,
4. O |= (⊥)(a) for every a,
5. O |= (⊥)(a) for some a.

Corollary
All standard reasoning problems are reducible to each other in
polynomial time.
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Tableau

I We first focus first on pure concept satisfiability
I Given: C a concept
I Return: yes if C is satisfiable, and no otherwise
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Tableau
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I Given: C a concept
I Return: yes if C is satisfiable, and no otherwise

I To check satisfiability of C , we build a tableau, which
represents an interpretation I such that CI 6= ∅
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Tableau

I We first focus first on pure concept satisfiability
I Given: C a concept
I Return: yes if C is satisfiable, and no otherwise

I To check satisfiability of C , we build a tableau, which
represents an interpretation I such that CI 6= ∅

I A tableau is a directed labeled graph T = (V ,E , L)
(most commonly, a tree) in which:

I nodes V represent domain elements,
I edges E represent pairs from role interpretations.
I labeling function L assigns:

to each v ∈ V 7→ a set of concepts L(v)
to each e ∈ E 7→ a set of roles L(e)
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Tableau: Example

Interpretation I = (∆I , ·I):
I ∆I = {a, b}
I ChildI = {a, b}
I DogI = {b}
I likesI = {(a, b), (b, b)}

Child

Dog

a b

likes

likes

Tableau T = (V ,E , L):
I V = {v ,w}
I E = {〈v ,w〉, 〈w ,w〉}
I L(v) = {Child}
I L(w) = {Child ,Dog}
I L〈v ,w〉 = L〈w ,w〉 = {likes}

v
{Child}

w
{Child ,Dog}

{likes} {likes}
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Negation Normal Form

Before constructing a tableau for a concept C , it is first converted
into a suitable normal form

Definition
C is in Negation Normal Form (short NNF) if ¬ in C appears only
in front of atomic concepts.

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



39/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Negation Normal Form

Before constructing a tableau for a concept C , it is first converted
into a suitable normal form

Definition
C is in Negation Normal Form (short NNF) if ¬ in C appears only
in front of atomic concepts.

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



39/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Negation Normal Form

Before constructing a tableau for a concept C , it is first converted
into a suitable normal form

Definition
C is in Negation Normal Form (short NNF) if ¬ in C appears only
in front of atomic concepts.
I Example: in NNF: ∀R.(¬A t ∃S.¬B)

not in NNF: ¬∃R.A, ∀R.¬(A u B), A u ∃R.¬>
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Negation Normal Form

Before constructing a tableau for a concept C , it is first converted
into a suitable normal form

Definition
C is in Negation Normal Form (short NNF) if ¬ in C appears only
in front of atomic concepts.
I Example: in NNF: ∀R.(¬A t ∃S.¬B)

not in NNF: ¬∃R.A, ∀R.¬(A u B), A u ∃R.¬>
I Transformation to NNF: “pushing negation inwards”:

I ¬(C u D) ⇒ (¬C) t (¬D)
I ¬(C t D) ⇒ (¬C) u (¬D)
I ¬(∃R.C) ⇒ ∀R.(¬C)
I ¬(∀R.C) ⇒ ∃R.(¬C)
I ¬¬C ⇒ C
I ¬> ⇒ ⊥, ¬⊥ ⇒ >
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Tableau Expansion Rules

I To check satisfiability of a concept C in NNF, create a node x
and set L(x) = {C}. We call it tableau initialization rule.

x C

Example: C = ∃R.A u (∀R.(¬A) t B)

(two tableau expansions)

v
∃R.A u (∀R.(¬A) t B),
∃R.A, ∀R.(¬A) t B,
∀R.(¬A)

w A, ¬A, ⊥
R

v
∃R.A u (∀R.(¬A) t B),
∃R.A, ∀R.(¬A) t B,
B

w A
R
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I ∃-Rule:
if (∃R.B) ∈ L(x) and B 6∈ L(y) for all y with R ∈ L〈x , y〉
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Tableau Expansion Rules

Example: C = ∃R.A u (∀R.(¬A) t B) (two tableau expansions)
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Outline

Description Logics

Tableau Procedures
Deciding Concept Satisfiability
Correctness of the Tableau Procedure
Termination and Complexity Analysis
Tableau with TBoxes
Blocking

Axiom Pinpointing

Conclusions
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Completeness of Tableau

Definition
A tableau T = (V ,E , L) contains a clash if ⊥ ∈ L(x) for some
node x ∈ V . A tableau is clash-free if it does not contain a clash.

Theorem (Completeness)
If an ALC concept C is satisfiable then the tableau rules can be
always applied in such a way that a clash is never produced.

Proof Idea.
Use a model of C to guide construction of the tableau.
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Completeness: Proof Idea

Example: C = ∃R.A u (∀R.(¬A) t B)

Model I:

A,B

R

Tableau T = (V ,E , L):

v
∃R.A u (∀R.(¬A) t B),
∃R.A, ∀R.(¬A) t B,
B

w A
R

τ

τ

I For every created node x we assign the corresponding element
τ(x) ∈ ∆I of the model I.

I We can always apply the rules such that:

1. if D ∈ L(x) then τ(x) ∈ DI , and
2. if R ∈ L(x , y) then 〈τ(x), τ(y)〉 ∈ RI .
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Soundness of Tableau

Definition
A tableau is fully expanded if all expansion rules are applied to
every node.

Theorem (Soundness)
If there exists a clash-free

fully expanded

tableau T = (V ,E , L)
such that C ∈ L(v) for some v ∈ V , then C is satisfiable.

Proof Idea.
Build a model from the tableau.
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Soundness: Proof Idea

Tableau T = (V ,E , L):

v
∃R.A u (∀R.(¬A) t B),
∃R.A, ∀R.(¬A) t B,
B

w A
R

Model I = (∆I , ·I):

I ∆I = {v ,w}
I AI = {w}
I BI = {v}
I RI = {〈v ,w〉}

I The model I = (∆I , ·I) is defined from T = (V ,E , L) by:

I ∆I = V
I AI = {x | A ∈ L(x)}
I RI = {〈x , y〉 | R ∈ L(x , y)}

I By structural induction it can be shown that:

if D ∈ L(x) then x ∈ DI
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Termination

Three possible outcomes of tableau rules application:

1. Tableau can be fully expanded without producing clash.

⇒ in this case the concept is satisfiable
2. Every attempt to apply the rules eventually results in a clash.
⇒ in this case the concept is unsatisfiable

3. The rules can be applied forever without producing a clash.
⇒ we will never find out if the concept is satisfiable or not

Is outcome 3 possible?
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⇒ we will never find out if the concept is satisfiable or not

Is outcome 3 possible?
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Properties of Tableau Expansion Rules

I x C
I x A u B  A, B x A t B  A | B

I
x ∃R.B

y  B
 R

x ∀R.B

y  B
R

I x A, ¬A  ⊥

1. Each new concept in the label is a sub-concept of the concept
to which the rule is applied, or ⊥

2. There can be at most one predecessor of every node
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Properties of Tableau

v1
∃R.A u ∃R.B u ∀R.∃R.C ,
∃R.A, ∃R.B, ∀R.∃R.C

v2 A, ∃R.C v3 B, ∃R.C

v4 C v5 C

R R

R R

1. Tableau is a tree: each non-root node has a single predecessor

2. The number of node children ≤ the number of concepts of
the form ∃R.D in the label

3. Each concept in the label is a sub-concepts of the original
concept (in the root) or ⊥

4. The depth of the tree is bounded by the maximal quantifier
depth of concepts – the maximal number of nested quantifiers
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Complexity of the Tableau Procedure

I The tableau expansion rules are non-deterministic due to the
t-Rule:

x A t B  A | B

I First-Order Logic
I ALC Concept Satisfiability
I Propositional Logic

. . .

SEMI-DECIDABLE
DECIDABLE

. . .

NExpTime
ExpTime
PSpace
NP
P
NL
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PSpace Tableau Procedure

I Expand the tableau depth-first and keep only one branch in
memory.

I Once all nodes on a branch are fully expanded, nothing new
can be added to these nodes anymore.
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Outline

Description Logics

Tableau Procedures
Deciding Concept Satisfiability
Correctness of the Tableau Procedure
Termination and Complexity Analysis
Tableau with TBoxes
Blocking

Axiom Pinpointing

Conclusions
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Concept Satisfiability w.r.t. TBox Axioms

I Our goal is to extend the tableau procedure so that we can
test satisfiability of a concept C w.r.t. an ontology O

I Recall that C is satisfiable w.r.t. O if there exists an
interpretation I such that CI 6= ∅ and I |= O

I For simplicity, assume that O contains only of TBox axioms:

I concept inclusions C v D
I concept equivalences C ≡ D
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Normal Form of TBox Axioms

I As for concepts, we first need to normalize TBox axioms
I convert to the form > v C where C is in NNF

I The conversion is easy:

1. C ≡ D  C v D, D v C
2. C v D  > v ¬C t D
3. > v C  > v NNF (C)

I Note that I |= > v C if and only if CI = ∆I .

I or d ∈ CI for every d ∈ ∆I
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Tableau Rules for TBox Axioms

To take TBox axioms into account, we need to add one more rule:
u-Rule: if (A u B) ∈ L(x) and {A,B} 6⊆ L(x)

then update L(x) := L(x) ∪ {A,B}
t-Rule: if (A t B) ∈ L(x) and {A,B} ∩ L(x) = ∅

then update L(x) := L(x) ∪ {A} or L(x) := L(x) ∪ {B}
∃-Rule: if (∃R.B) ∈ L(x) and B 6∈ L(y) for all y with R ∈ L(x , y)

then create a new y and set L(x , y) := {R} and L(y) := {B}
∀-Rule: if (∀R.B) ∈ L(x) and R ∈ L(x , y), B /∈ L(y) for some y ∈ V

then update L(y) := L(y) ∪ {B}
⊥-Rule: if {A,¬A} ⊆ L(x) and ⊥ /∈ L(x)

then update L(x) := L(x) ∪ {⊥}
>-Rule: if > v C ∈ O and C /∈ L(x)

then update L(x) := L(x) ∪ {C}
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Example

I Consider O = {A u ∀R.B v ∃R.A}.

v
A, (¬A t ∃R.¬B) t ∃R.A
¬A t ∃R.¬B, ∃R.¬B

w ¬B, (¬A t ∃R.¬B) t ∃R.A
¬A t ∃R.¬B, ¬A

R
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Completeness of Tableau for TBoxes

Theorem (Completeness)
If an ALC concept C is satisfiable w.r.t. O then the tableau rules
can be always applied in such a way that a clash is never produced.

Proof.
As before, we build the tableau T = (V ,E , L) by applying the
rules to mimic I |= O such that CI 6= ∅.
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Soundness of Tableau for TBoxes

Theorem (Soundness)
If there exists a clash-free fully expanded tableau T = (V ,E , L)
such that C ∈ L(v) for some v ∈ V , then C is satisfiable w.r.t. O.

Proof.
As in the case without O, we define an interpretation I = (∆I , ·I)
from T = (V ,E , L) with ∆I = V and prove that:

if D ∈ L(x) then x ∈ DI

This implies that CI 6= ∅.

Now we also prove that I |= O:

Take any > v D ∈ O and x ∈ >I = ∆I = V .
Then D ∈ L(x) because >-Rule is applied to x .
Then x ∈ DI . Hence I |= > v D.

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



60/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Soundness of Tableau for TBoxes

Theorem (Soundness)
If there exists a clash-free fully expanded tableau T = (V ,E , L)
such that C ∈ L(v) for some v ∈ V , then C is satisfiable w.r.t. O.

Proof.
As in the case without O, we define an interpretation I = (∆I , ·I)
from T = (V ,E , L) with ∆I = V and prove that:

if D ∈ L(x) then x ∈ DI

This implies that CI 6= ∅.

Now we also prove that I |= O:

Take any > v D ∈ O and x ∈ >I = ∆I = V .
Then D ∈ L(x) because >-Rule is applied to x .
Then x ∈ DI . Hence I |= > v D.

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



60/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Soundness of Tableau for TBoxes

Theorem (Soundness)
If there exists a clash-free fully expanded tableau T = (V ,E , L)
such that C ∈ L(v) for some v ∈ V , then C is satisfiable w.r.t. O.

Proof.
As in the case without O, we define an interpretation I = (∆I , ·I)
from T = (V ,E , L) with ∆I = V and prove that:

if D ∈ L(x) then x ∈ DI

This implies that CI 6= ∅. Now we also prove that I |= O:

Take any > v D ∈ O and x ∈ >I = ∆I = V .
Then D ∈ L(x) because >-Rule is applied to x .
Then x ∈ DI . Hence I |= > v D.

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



60/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Soundness of Tableau for TBoxes

Theorem (Soundness)
If there exists a clash-free fully expanded tableau T = (V ,E , L)
such that C ∈ L(v) for some v ∈ V , then C is satisfiable w.r.t. O.

Proof.
As in the case without O, we define an interpretation I = (∆I , ·I)
from T = (V ,E , L) with ∆I = V and prove that:

if D ∈ L(x) then x ∈ DI

This implies that CI 6= ∅. Now we also prove that I |= O:

Take any > v D ∈ O and x ∈ >I = ∆I = V .

Then D ∈ L(x) because >-Rule is applied to x .
Then x ∈ DI . Hence I |= > v D.

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



60/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Soundness of Tableau for TBoxes

Theorem (Soundness)
If there exists a clash-free fully expanded tableau T = (V ,E , L)
such that C ∈ L(v) for some v ∈ V , then C is satisfiable w.r.t. O.

Proof.
As in the case without O, we define an interpretation I = (∆I , ·I)
from T = (V ,E , L) with ∆I = V and prove that:

if D ∈ L(x) then x ∈ DI

This implies that CI 6= ∅. Now we also prove that I |= O:

Take any > v D ∈ O and x ∈ >I = ∆I = V .
Then D ∈ L(x) because >-Rule is applied to x .

Then x ∈ DI . Hence I |= > v D.

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



60/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Soundness of Tableau for TBoxes

Theorem (Soundness)
If there exists a clash-free fully expanded tableau T = (V ,E , L)
such that C ∈ L(v) for some v ∈ V , then C is satisfiable w.r.t. O.

Proof.
As in the case without O, we define an interpretation I = (∆I , ·I)
from T = (V ,E , L) with ∆I = V and prove that:

if D ∈ L(x) then x ∈ DI

This implies that CI 6= ∅. Now we also prove that I |= O:

Take any > v D ∈ O and x ∈ >I = ∆I = V .
Then D ∈ L(x) because >-Rule is applied to x .
Then x ∈ DI .

Hence I |= > v D.

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



60/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Soundness of Tableau for TBoxes

Theorem (Soundness)
If there exists a clash-free fully expanded tableau T = (V ,E , L)
such that C ∈ L(v) for some v ∈ V , then C is satisfiable w.r.t. O.

Proof.
As in the case without O, we define an interpretation I = (∆I , ·I)
from T = (V ,E , L) with ∆I = V and prove that:

if D ∈ L(x) then x ∈ DI

This implies that CI 6= ∅. Now we also prove that I |= O:

Take any > v D ∈ O and x ∈ >I = ∆I = V .
Then D ∈ L(x) because >-Rule is applied to x .
Then x ∈ DI . Hence I |= > v D.

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



61/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Termination

Three possible outcomes of tableau rules application:
1. Tableau can be fully expanded without producing clash.
⇒ In this case the concept is satisfiable.

2. Every attempt to apply the rules eventually results in a clash.
⇒ In this case the concept is unsatisfiable.

3. The rules can be applied forever without producing a clash.
⇒ We will never find out if the concept is satisfiable or not.

Unfortunately, with TBoxes, the outcome 3 becomes possible!
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Non-Termination: Example

I Consider O = {A v ∃R.A}

I Normalization:
A v ∃R.A  > v ¬A t ∃R.A

I Let’s check satisfiability of A w.r.t. O:
I This process can continue forever!

v0 A, ¬A t ∃R.A, ∃R.A

v1 A, ¬A t ∃R.A, ∃R.A
R

v2 A, ¬A t ∃R.A, ∃R.A
R
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R

v2 A, ¬A t ∃R.A, ∃R.A
R
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Blocking

I Notice that the labels of the nodes repeat:
v0 A, ¬A t ∃R.A, ∃R.A

v1 A, ¬A t ∃R.A, ∃R.A
R
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I Notice that the labels of the nodes repeat:
v0 A, ¬A t ∃R.A, ∃R.A

v1 A, ¬A t ∃R.A, ∃R.A
R

I We can block further expansion for such repetitions

Definition (Blocking)
A node v ∈ V is blocked if there exists an ancestor node w ∈ V of
v such that L(v) ⊆ L(w). (We say that v is blocked by w .)
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Blocking

I Notice that the labels of the nodes repeat:
v0 A, ¬A t ∃R.A, ∃R.A

v1 A, ¬A t ∃R.A, ∃R.A
R

I We can block further expansion for such repetitions

Definition (Blocking)
A node v ∈ V is blocked if there exists an ancestor node w ∈ V of
v such that L(v) ⊆ L(w). (We say that v is blocked by w .)

I Above v1 is blocked by v0, but v0 is not blocked by v1
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Soundness with Blocking

Definition
A tableau is fully expanded if all expansion rules are applied to
every non-blocked node.

Theorem (Soundness)
If there exists a clash-free fully expanded tableau T = (V ,E , L)
such that C ∈ L(v) for some v ∈ V , then C is satisfiable w.r.t. O.
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Direct Blocking and Blocking

I We can extend the blocking condition to prevent further
unnecessary rule applications:
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Direct Blocking and Blocking

I We can extend the blocking condition to prevent further
unnecessary rule applications:

I Example:
v0 A,C

v3 A,B

v1 C v2 A
R R

R
 

v0 A,C

v1 C v2 A
R R

I v3 is not blocked, but it is a descendant of a blocked node v2
I no rules need to be applied as v3 can be simply removed
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Direct Blocking and Blocking

I We can extend the blocking condition to prevent further
unnecessary rule applications:

I Example:
v0 A,C

v3 A,B

v1 C v2 A
R R

R
 

v0 A,C

v1 C v2 A
R R

Definition (Direct Blocking, Blocking)
A node v ∈ V is directly blocked if there exists an ancestor node
w ∈ V of v such that L(v) ⊆ L(w).

A node v ∈ V is blocked if it is either directly blocked or one of its
ancestor nodes is directly blocked.
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Complexity

I What is the size of the largest clash-free tableau one can
obtain without applying the rules to blocked nodes?

I Let n be the number of sub-concepts occurring in C or O
I The number of different subsets of these concepts is 2n

I So, if a path in a tableau contains more than 2n nodes, then at
least one node on this path is directly blocked

I Hence, all tableau nodes with level 2n + 1 must be blocked
I Thus, we can never create a node with level 2n + 2
I So, the depth of the tableau is always bounded by 2n + 1
I So, the maximal size of the tableau is n2n – doubly exponential

I First-Order Logic
I ALC Concept Satisfiability w.r.t.

TBox
I ALC Concept Satisfiability
I Propositional Logic

. . .

SEMI-DECIDABLE
DECIDABLE

. . .

NExpTime
ExpTime
PSpace
NP
P
NL
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Motivation

I Reasoning algorithms (such as tableau) can detect the
presence of modeling errors: answer yes or no

I How to determine what causes the error?

I existing ontologies contain hundreds of thousands of axioms
I an inconsistency is rarely caused by more than a few axioms

I The axiom pinpointing algorithms can be used to narrow
down the axioms responsible for the error

I using a series of entailment tests

O
?
|= > v ⊥
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1254.Parent ≡ ∃hasChild .>
. . .
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Justifications

I A justification for an entailment O |= α is a a minimal subset
of axioms J ⊆ O such that J |= α
I minimal means that for every J ′ ( J , we have J ′ 6|= α.

I Justifications:

I J1 = {A v B, B v C},
I J2 = {A v C},
I J3 = {A v B, A u B v ⊥}.
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The Number of Justifications

I How many justifications an entailment may have?
I there can be exponentially-many justifications!
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The Number of Justifications

I How many justifications an entailment may have?
I there can be exponentially-many justifications!

I Example:
{A0 v B u A1, A1 v B u A2, . . . ,An−1 v B u An,
A0 v C u A1, A1 v C u A2, . . . ,An−1 v C u An} |= A0 v An
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The Number of Justifications

I How many justifications an entailment may have?
I there can be exponentially-many justifications!

I Example:
{A0 v B u A1, A1 v B u A2, . . . ,An−1 v B u An,
A0 v C u A1, A1 v C u A2, . . . ,An−1 v C u An} |= A0 v An

I There are 2n justifications:
I for every i choose either Ai−1 v B u Ai or Ai−1 v C u Ai
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Computing One Justification

I How to find a justification?
I remove axioms one by one so long the entailment still holds

I Result: J2 = {A v C}
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Computing All Justifications

I Notice that the justification returned by the previous algorithm
depends on the order in which axioms are considered.
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Computing All Justifications

I Notice that the justification returned by the previous algorithm
depends on the order in which axioms are considered.

I Example: removal in the reversed order of axioms:
{A u B v ⊥, A v C , B v C , A v B} |= A v C
Gives: J1 = {B v C , A v B}
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I To compute all justifications it is sufficient to consider all
permutations of axioms
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Gives: J1 = {B v C , A v B}

I To compute all justifications it is sufficient to consider all
permutations of axioms
I each justification comes at the end of some permutation

I The number of permutations of n axioms is n! ≤ 2n2

⇒ algorithmically optimal, but not practical
I previously computed justifications are ignored
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Computing All Justifications

I Notice that the justification returned by the previous algorithm
depends on the order in which axioms are considered.

I Example: removal in the reversed order of axioms:
{A u B v ⊥, A v C , B v C , A v B} |= A v C
Gives: J1 = {B v C , A v B}

I To compute all justifications it is sufficient to consider all
permutations of axioms
I each justification comes at the end of some permutation

I The number of permutations of n axioms is n! ≤ 2n2

⇒ algorithmically optimal, but not practical
I previously computed justifications are ignored

I Next we describe a more goal-directed algorithm
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Computing a New Justification

I Suppose we have computed justifications J1, . . . , Jn for O |= α

I How to find a new justification J?
I J should miss at least one axiom βi from each Ji (1 ≤ i ≤ n)
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I Suppose we have computed justifications J1, . . . , Jn for O |= α

I How to find a new justification J?
I J should miss at least one axiom βi from each Ji (1 ≤ i ≤ n)

I Solution:
1. iterate over tuples 〈β1, . . . , βn〉 such that βi ∈ Ji (1 ≤ i ≤ n)
2. check whether O \ {β1, . . . , βn} |= α
3. if so, extract a minimal J ⊆ O \ {β1, . . . , βn} such that J |= α
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Computing a New Justification

I Suppose we have computed justifications J1, . . . , Jn for O |= α

I How to find a new justification J?
I J should miss at least one axiom βi from each Ji (1 ≤ i ≤ n)

I Solution:
1. iterate over tuples 〈β1, . . . , βn〉 such that βi ∈ Ji (1 ≤ i ≤ n)
2. check whether O \ {β1, . . . , βn} |= α
3. if so, extract a minimal J ⊆ O \ {β1, . . . , βn} such that J |= α

I The Hitting Set Tree algorithm (short: HST-algorithm)
explores such tuples 〈β1, . . . , βn〉 in a systematic way
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The Hitting Set Tree

The Hitting Set Tree (short: HS-tree)
for O |= α is a labeled tree such that:
1. Each non-leaf node is labeled by a

justification for O |= α

2. Each edge is labeled by an axiom
from the justification of the parent

3. Each justification misses all
axioms on the path to the root

4. If there is no such a justification,
the node is labeled by ⊥ (leaf)

Example:
{A v C}

{A v B, A u B v ⊥}

⊥

A v B

{A v B, B v C}

⊥

A v B

⊥

B v C

A u B v ⊥

A v C
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Properties of Hitting Set Trees

1. HS-tree for an entailment O |= α is not unique:
I Example: two different HS-trees for our entailment:

{A v C}

{A v B, A u B v ⊥}

⊥

A v B

{A v B, B v C}

⊥

A v B

⊥

B v C

A u B v ⊥

A v C

{A v B, B v C}

{A v C}

⊥

A v C

A v B

{A v C}

{A v B, A u B v ⊥}

⊥

A v B

⊥

A u B v ⊥

A v C

B v C

Note that a HS-tree may contain a justification multiple times!
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Properties of Hitting Set Trees

2. Each justification J appears in every HS-tree T at least once

Proof Sketch.

I For a node v , let H(v) be the set of the
axioms on the path from v to the root of T

I Let v be a node with a maximal H(v) such
that H(v) ∩ J = ∅

I We claim tha v is labeled by J!

{A v C}

{A v B, A u B v ⊥}

⊥

A v B

{A v B, B v C}

⊥

A v B

⊥

B v C

A u B v ⊥

A v C
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Properties of Hitting Set Trees

2. Each justification J appears in every HS-tree T at least once

Proof Sketch.
I For a node v , let H(v) be the set of the

axioms on the path from v to the root of T
I Let v be a node with a maximal H(v) such

that H(v) ∩ J = ∅
I We claim tha v is labeled by J!

{A v C}

{A v B, A u B v ⊥}

⊥

A v B

{A v B, B v C}

⊥

A v B

⊥

B v C

A u B v ⊥

A v C

3. Each HS-tree contains at most exponentially-many nodes
I every path is labeled by a unique sequence of different axioms
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Construction of a HS-Tree

A HS-Tree for O |= α can be constructed as follows:
1. Create a root node v0
2. Repeatedly assign a label to every node v :

I If O \ H(v) 6|= α then label v by ⊥.
I Else, extract a justification J ⊆ O \ H(v) by removing axioms,

label v with J ,
and create a successor for every β ∈ J .

Example: {A v B, B v C , A v C , A u B v ⊥} |= A v C

{A v C}

{A v B, A u B v ⊥}

⊥

A v B

{A v B, B v C}

A u B v ⊥

A v C
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Construction of a HS-Tree

A HS-Tree for O |= α can be constructed as follows:
1. Create a root node v0
2. Repeatedly assign a label to every node v :

I If O \ H(v) 6|= α then label v by ⊥.
I Else, extract a justification J ⊆ O \ H(v) by removing axioms,

label v with J ,
and create a successor for every β ∈ J .

Example: {A v B, B v C , A v C , A u B v ⊥} |= A v C
{A v C}

{A v B, A u B v ⊥}
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A v B

{A v B, B v C}

A u B v ⊥

A v C I {A v B, B v C , A u B v ⊥} |= A v C
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Construction of a HS-Tree

A HS-Tree for O |= α can be constructed as follows:
1. Create a root node v0
2. Repeatedly assign a label to every node v :

I If O \ H(v) 6|= α then label v by ⊥.
I Else, extract a justification J ⊆ O \ H(v) by removing axioms,

label v with J ,
and create a successor for every β ∈ J .

Example: {A v B, B v C , A v C , A u B v ⊥} |= A v C
{A v C}

{A v B, A u B v ⊥}

⊥

A v B

{A v B, B v C}

A u B v ⊥

A v C I {A v B, B v C , A u B v ⊥} |= A v C
I {A v B, A u B v ⊥} |= A v C
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Construction of a HS-Tree

A HS-Tree for O |= α can be constructed as follows:
1. Create a root node v0
2. Repeatedly assign a label to every node v :

I If O \ H(v) 6|= α then label v by ⊥.
I Else, extract a justification J ⊆ O \ H(v) by removing axioms,

label v with J ,
and create a successor for every β ∈ J .

Example: {A v B, B v C , A v C , A u B v ⊥} |= A v C
{A v C}

{A v B, A u B v ⊥}

⊥

A v B

{A v B, B v C}

A u B v ⊥

A v C I {A u B v ⊥} 6|= A v C
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Construction of a HS-Tree

A HS-Tree for O |= α can be constructed as follows:
1. Create a root node v0
2. Repeatedly assign a label to every node v :

I If O \ H(v) 6|= α then label v by ⊥.
I Else, extract a justification J ⊆ O \ H(v) by removing axioms,

label v with J ,
and create a successor for every β ∈ J .

Example: {A v B, B v C , A v C , A u B v ⊥} |= A v C
{A v C}

{A v B, A u B v ⊥}

⊥

A v B

{A v B, B v C}

A u B v ⊥

A v C I {A v B, B v C} |= A v C
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Repairs

I The sets H(v) for leaf nodes are special:
I O \ H(v) 6|= α

{A v C}

{A v B, A u B v ⊥}

⊥

A v B

{A v B, B v C}

⊥

A v B

⊥

B v C

A u B v ⊥

A v C

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



82/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Repairs

I The sets H(v) for leaf nodes are special:
I O \ H(v) 6|= α

I A subset R ⊆ O is a repair for O |= α if
O \ R 6|= α

{A v C}

{A v B, A u B v ⊥}

⊥

A v B

{A v B, B v C}

⊥

A v B

⊥

B v C

A u B v ⊥

A v C

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



82/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Repairs

I The sets H(v) for leaf nodes are special:
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Repairs

I The sets H(v) for leaf nodes are special:
I O \ H(v) 6|= α

I A subset R ⊆ O is a repair for O |= α if
O \ R 6|= α

I The HST-algorithm, therefore, also
computes repairs

I Note: not all computed repairs are
minimal

I However, each HS-tree contains all
minimal repairs among H(v)
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⊥
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{A v B, B v C}

⊥
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⊥
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A v C
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Optimizations

The HST-algorithm can be further optimized
I One branch at a time:

I it is enough to store only the current branch in memory
I can be implemented in polynomial space

⇒ Flexible trade-off: memory vs speed
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The Hitting Set Duality

I Let J be a justification R a repair for O |= α
I i.e., J |= α and O \ R 6|= α

⇒ Each (minimal) repair is a (minimal) hitting set of all
justifications

I Gives the name of the HST-algorithm
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The Hitting Set Duality

I Let J be a justification R a repair for O |= α
I i.e., J |= α and O \ R 6|= α

I Notice that J ∩ R 6= ∅
I otherwise, if R ∩ J = ∅ then J ⊆ O \ R 6|= α

⇒ Each (minimal) repair is a (minimal) hitting set of all
justifications

I Gives the name of the HST-algorithm
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I i.e., J |= α and O \ R 6|= α

I Notice that J ∩ R 6= ∅
I otherwise, if R ∩ J = ∅ then J ⊆ O \ R 6|= α

⇒ The Hitting Set Duality (between justifications and repairs)

⇒ Each (minimal) repair is a (minimal) hitting set of all
justifications

I Gives the name of the HST-algorithm
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I Let J be a justification R a repair for O |= α
I i.e., J |= α and O \ R 6|= α

I Notice that J ∩ R 6= ∅
I otherwise, if R ∩ J = ∅ then J ⊆ O \ R 6|= α

⇒ The Hitting Set Duality (between justifications and repairs)

Definition
I Let P = {S1,S2, . . . ,Sn} be a collection of sets.
I A set H is a hitting set for P if H ∩ Si 6= ∅ for each i (1 ≤ i ≤ n).
I A hitting set is minimal if every H ′ ( H is not a hitting set for P.

⇒ Each (minimal) repair is a (minimal) hitting set of all
justifications

I Gives the name of the HST-algorithm
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The Hitting Set Duality

I Let J be a justification R a repair for O |= α
I i.e., J |= α and O \ R 6|= α

I Notice that J ∩ R 6= ∅
I otherwise, if R ∩ J = ∅ then J ⊆ O \ R 6|= α

⇒ The Hitting Set Duality (between justifications and repairs)

Definition
I Let P = {S1,S2, . . . ,Sn} be a collection of sets.
I A set H is a hitting set for P if H ∩ Si 6= ∅ for each i (1 ≤ i ≤ n).
I A hitting set is minimal if every H ′ ( H is not a hitting set for P.

⇒ Each justification is a minimal hitting set of all repairs
⇒ Each (minimal) repair is a (minimal) hitting set of all

justifications
I Gives the name of the HST-algorithm

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



86/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Finding new Justifications and Repairs

I Assume we have computed some justifications J1, . . . , Jn and
repairs R1, . . . ,Rn for O |= α and want to find more

I A new justification must:

1. miss at least one axiom from each Ji (1 ≤ i ≤ n)
2. contain at least one axiom from each Rj (1 ≤ j ≤ m)

I Suppose some M ⊆ O satisfies these two conditions
I If M |= α, we can remove axioms to find a justification J ⊆ M

I J will still miss an axiom from each Ji ⇒ J is new!

I If M 6|= α then R = O \M is a repair!

I O \ R = O \ (O \M) = M 6|= α
I R misses one axiom from each Rj (the one in M) ⇒ R is new!

I Either way we find a new justification or a new repair
I Question: how to find M satisfying 1 and 2?
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SAT Encoding

I The conditions on M can be expressed in Propositional Logic
I and solved using existing satisfiability (SAT) solvers
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I The conditions on M can be expressed in Propositional Logic
I and solved using existing satisfiability (SAT) solvers

I For each axiom β ∈ O introduce a propositional variable pβ

I Goal: find a model I such that pIβ = 1 iff β ∈ M
I Then the conditions can be expressed by the formula:

F =
n∧

i=1

∨
β∈Ji

¬pβ ∧
m∧

j=1

∨
β∈Rj

pβ

1. M must miss some β ∈ Ji for each i (1 ≤ i ≤ n)
2. M must contain some β ∈ Rj for each j (1 ≤ j ≤ n)

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



87/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

SAT Encoding

I The conditions on M can be expressed in Propositional Logic
I and solved using existing satisfiability (SAT) solvers

I For each axiom β ∈ O introduce a propositional variable pβ

I Goal: find a model I such that pIβ = 1 iff β ∈ M
I Then the conditions can be expressed by the formula:

F =
n∧

i=1

∨
β∈Ji

¬pβ ∧
m∧

j=1

∨
β∈Rj

pβ

1. M must miss some β ∈ Ji for each i (1 ≤ i ≤ n)

2. M must contain some β ∈ Rj for each j (1 ≤ j ≤ n)

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



87/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

SAT Encoding

I The conditions on M can be expressed in Propositional Logic
I and solved using existing satisfiability (SAT) solvers

I For each axiom β ∈ O introduce a propositional variable pβ

I Goal: find a model I such that pIβ = 1 iff β ∈ M
I Then the conditions can be expressed by the formula:

F =
n∧

i=1

∨
β∈Ji

¬pβ ∧
m∧

j=1

∨
β∈Rj

pβ

1. M must miss some β ∈ Ji for each i (1 ≤ i ≤ n)
2. M must contain some β ∈ Rj for each j (1 ≤ j ≤ n)

Copyright (c) Birte Glimm, Yevgeny Kazakov, Ulm Universty



88/96 Birte Glimm and Yevgeny Kazakov | Classical Algorithms for Reasoning and Explanation in DLs | RW’2019

Example

I Entailment: {A v B, B v C , A v C , A u B v ⊥} |= A v C
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I A u B v ⊥ p4.
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I A v B  p1,
I B v C  p2,

I A v C  p3,
I A u B v ⊥ p4.

I Suppose that justifications and repairs found so far are:
I J1 = {A v B, B v C}, J2 = {A v C},
I R1 = {A v B, A v C}

I The resulting formula is: F = (¬p1 ∨ ¬p2) ∧ (¬p3) ∧ (p1 ∨ p3)
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I A u B v ⊥ p4.
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I J1 = {A v B, B v C}, J2 = {A v C},
I R1 = {A v B, A v C}

I The resulting formula is: F = (¬p1 ∨ ¬p2) ∧ (¬p3) ∧ (p1 ∨ p3)
I F has a model I: pI1 = 1 and pI2 = pI3 = pI4 = 0
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I B v C  p2,
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I J1 = {A v B, B v C}, J2 = {A v C},
I R1 = {A v B, A v C}

I The resulting formula is: F = (¬p1 ∨ ¬p2) ∧ (¬p3) ∧ (p1 ∨ p3)
I F has a model I: pI1 = 1 and pI2 = pI3 = pI4 = 0
I I corresponds to M = {A v B} 6|= A v C
I O \M = {B v C , A v C , A u B v ⊥} is a new repair

I in fact, even a new minimal repair
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The SAT-Based Algorithm

1. Set F = >
2. While F is satisfiable do:

I take any model I of F
I define M = {β | pIβ = 1}
I if M |= α then extract a justification J ⊆ M
I otherwise set R = O \M (and optionally minimize)
I update F based on J or R

3. Return all computed justifications J (and / or repairs R)
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Comparison of Axiom Pinpointing Methods

HST SAT
Repetition of justifications: may repeat(∗) no repetition
Memory consumption: polynomial exponential

(∗)There is an example in which justifications repeat exponentially-many times
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Description Logics

I A family of logic-based languages for knowledge representation
I Distinguished by the well-defined formal semantics
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I A family of logic-based languages for knowledge representation
I Distinguished by the well-defined formal semantics
I Exceptional application support:

I a W3C-standardized language OWL based on DLs
I ontology editors
I ontology reasoners

I ontology repositories

FaCT++ CB
HermiT ConDOR
Konclude ELK
MoRE Sequoia
Pellet
RACER
TrOWL
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Tableau Procedures

I Main focus: expressivity and efficiency
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I termination requires extensions, such as blocking
I correctness proofs become complicated
I theoretical complexity vs. practical efficiency
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Tableau Procedures

I Main focus: expressivity and efficiency
I Rely on a (generalized) tree model property
I Development effort increases with expressivity:

I termination requires extensions, such as blocking
I correctness proofs become complicated
I theoretical complexity vs. practical efficiency

I Alternative reasoning procedures: consequence-based
I work by deriving consequences, not building models
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Explanations

I Main application: ontology debugging
I other applications, e.g., inconsistency-tolerant reasoning
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Explanations

I Main application: ontology debugging
I other applications, e.g., inconsistency-tolerant reasoning

I Implemented in many tools
I explanation workbench, EL+SAT, EL2MUS, SATPin,. . .

I Other explanation methods: proof-based explanations
I show how consequences are derived from axioms
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Algorithms

Lessons learned about algorithms in general:
1. Never neglect correctness!
2. Worst-case complexity may be misleading
3. Goal-directed behavior is the key to practical efficiency
4. Only empirical evaluation can give a complete picture
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